KINETIC THEORY

1.		s of a gas (in arbitrary unit	s) are as follows: 2,3,4,5,6.	The root mean square
	speed for these molecule	s is		
	a) 2.91	b) 3.52	c) 4.00	d) 4.24
2.) K, if surrounding tempera	ture is 300 K isR. The rate	
	a) $\frac{16}{3}R$	b) 2 R	c) 3 R	d) $\frac{2}{3}R$
3.	For a diatomic gas change U_2 respectively. U_1 : U_2 is	e in internal energy for uni	t change in temperature for	r constant volume is U_1 and
	a) 5:3	b) 3 : 5	c) 1:1	d) 5 : 7
4.	The temperature of a pier increased to	ce of metal is increased fro	m 27°C to 84°C. The rate at	which energy is radiated is
	a) Four times	b) Two times	c) Six times	d) Eight times
5.	The kinetic energy of train $8.3J/mol/K$)	nslation of 20 g of oxygen a	t 47°C is (molecular wt. of	oxygen is 32 g/mol and R =
	a) 2490 joules	b) 2490 ergs	c) 830 joules	d) 124.5 joules
6.	Two thermally insulated	vessels 1 and 2 are filled w	ith air at temperatures (T_1)	(T_1) volume (V_1, V_2) and
	pressure (P_1, P_2) respecti	vely. If the valve joining th	e two vessels is opened, the	e temperature inside the
	vessel at equilibrium will	be		
	a) $T_1 + T_2$	b) $(T_1 + T_2)/2$	c) $\frac{T_1T_2(P_1V_1 + P_2V_2)}{P_1V_1T_2 + P_2V_2T_1}$	d) $\frac{T_1T_2(P_1V_1 + P_2V_2)}{P_1V_1T_1 + P_2V_2T_2}$
7.	The pressure and volume	of saturated water vapour	1 1 2 2 2 1	1 1 1 2 2 2
		ume becomes $V/2$, the final		Control of Application (Control of Application)
	a) More than 2P	b) <i>P</i>	c) 2 <i>P</i>	d) 4P
8.	At which temperature the	e velocity of O_2 molecules v	vill be equal to the velocity	of N ₂ molecules at 0°C
	a) 40°C	b) 93°C	c) 39°C	d) Cannot be calculated
9.	Kinetic theory of gases pr	ovide a base for		
	a) Charle's law		b) Boyle's law	
	c) Charle's law and Boyle	e's law	d) None of these	
10.	The time average of the k	inetic energy of one molec	ule of a gas taken over a loi	ng period of time
	a) Is proportional to the	square root of the absolute	temperature of the gas	
	b) Is proportional to the	absolute temperature of the	e gas	
	c) Is proportional to the	square of the absolute temp	perature of the gas	
	d) Does not depend upon	the absolute temperature	of the gas	
11.	Kinetic theory of gases w	as put forward by		
	a) Einstein	b) Newton	c) Maxwell	d) Raman
12.	In kinetic theory of gases wrong	, which of the following sta	tements regarding elastic o	collisions of the molecules is
	a) Kinetic energy is lost in	n collisions		
	b) Kinetic energy remain	s constant in collision		
	c) Momentum is conserv	ed in collision		
	d) Pressure of the gas rer	nains constant in collisions		

13.	If v is the ratio of speci	fic heats and R is the univ	versal gas constant, then	the molar specific heat a
	constant volume C_v is g		.	- r
			R	γR
	a) γ <i>R</i>	b) $\frac{(\gamma-1)R}{\gamma}$	c) $\frac{R}{\gamma - 1}$	d) $\frac{\gamma R}{\gamma - 1}$
14.	The vapour of a substance	e behaves as a gas	4 200	1 575
	a) Below critical tempera	127	b) Above critical tempera	ture
	c) At 100°C		d) At 1000°C	
15.		deal gas increases three tin	nes, then its <i>rms</i> velocity w	vill become
	a) $\sqrt{3}$ times	b) 3 times	c) One third	d) Remains same
16.	The relationship between	pressure and the density	of a gas expressed by Boyle	s law, $P = KD$ holds true
	a) For any gas under any		b) For some gases under	
	c) Only if the temperatur	e is kept constant	d) Only if the density is co	onstant
17.	If the ratio of vapour den	sity for hydrogen and oxyg	en is $\frac{1}{16}$, then under constar	nt pressure the ratio of thei
	rms velocities will be		16	
		1	. 1	16
	a) $\frac{4}{1}$	b) $\frac{1}{4}$	c) $\frac{1}{16}$	d) $\frac{16}{1}$
18.	The gases carbon-mone	oxide (CO) and nitrogen	at the same temperature	have kinetic energies
	E_1 and E_2 respectively.	Then		
	a) $E_1 = E_2$		b) $E_1 > E_2$	
	c) $E_1 < E_2$		d) E_1 and E_2 cannot be	compared
19.	What is the mass of 2 L	of nitrogen at 22.4 atm ;		Colored Colore
	a) 28 g	b) 14 × 22.4 g	c) 56 g	d) None of these
20.	71.78 MARINE 10 1	ergy of a gas molecules is		1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	a) Proportional to pres	(355) (35)	b) Inversely proportion	al to volume of gas
	c) Inversely proportion	AND DESCRIPTION OF THE PROPERTY	0	l to absolute temperatur
	temperature of gas		of gas	
21.		vs graph of pressure and vo	olume of a gas at two temps	eratures T_1 and T_2 . Which of
	the following inferences			1 2
	P			
	T ₂			
	$V \longrightarrow V$		L) T T	
	a) $T_1 > T_2$		b) $T_1 = T_2$ d) No interference can be	draum
22	c) $T_1 < T_2$	o() the rms speed of the m	olecules of a certain diaton	
22.	ms^{-1} . The gas is	c) the rms speed of the m	orecties of a certain diaton	ne gas is found to be 1720
	a) Cl ₂	b) 0 ₂	c) N ₂	d) H ₂
23			of density ρ is proportiona	
	1			
	a) $\frac{1}{\rho^2}$	b) $\frac{1}{\rho}$	c) ρ^2	d) ρ
24.	Temperature remainin	g constant, the pressure	of gas is decreased by 20	%. The percentage
	change in volume	♥ 1 00 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	a) Increases by 20%	b) Decreases by 20%	c) Increases by 25%	d) decreases by 25%
25.	The state of the s	1962년 : 1968년 1일 100 HENNESSEN HENNESSEN HENNESSEN HENNESSEN HENNESSEN HENNESSEN HENNESSEN HENNESSEN HENNESSEN	The rms velocity of mole	
r55370(8)		nd half the absolute tem		- Bus mini times
	a) 300 ms ⁻¹	b) 600 ms ⁻¹	c) 75 ms ⁻¹	d) 150 ms ⁻¹
	a, ooo mo	., 000 ms	-, , o mo	

26.	A jar contains a gas and few drop temperature of jar is reduced by 30 mm and 25 mm of mercury. T	1%. The saturated	vapour pressure of water a	
	a) 917 mm of Hg b) 717	mm of Hg	c) 817 mm of Hg	d) None of these
27.	The gas equation $\frac{PV}{T}$ = constant is	s true for a constan	t mass of an ideal gas unde	rgoing
	a) Isothermal change b) Adi	abatic change	c) Isobaric change	d) Any type of change
28.	The pressure and temperature of			9.700
	mixed keeping the same volume	and temperature, tl	하고 생생님들은 이번 발생님들은 아이와 아이와 아이와 아이가 아이와 아이가 아이와 아이가 아이와 되었다.	
20	a) P/2 b) P	1.11 1 D 1	c) 2P	d) 4P
29.	Vessel A is filled with hydrogen w mass of oxygen at the same temp	erature. The ratio o	of the mean kinetic energie	
	a) 16:1 b) 1:3		c) 8:1	d) 1 : 1
30.	The root mean square speed of hy speed of oxygen molecules at 900		at 300 K is $1930 m/s$. The	n the root mean square
	a) $1930\sqrt{3} \ m/s$ b) 836	m/s	c) 63 m/s	d) $\frac{1930}{\sqrt{3}} m/s$
31.	A cylinder rolls without slipping	down an inclined p		s of freedom it has, is
22	a) 2 b) 3 Two spheres made of same mater	rial have radii in th	c) 5	d) 1
32.	heat radiation energy emitted pe			ne temperature. Natio of
	a) 1:2 b) 1:4	angaran-angarang angarang dengan dengan dan dan dan dan dan dan dan dan dan d	c) 1:8	d) 1:16
33.	If $r.m.s.$ velocity of a gas is V_{rms} = gas will be	= 1840 m/s and its	s density $\rho = 8.99 \times 10^{-2} k$	g/m^3 , the pressure of the
	a) $1.01 N/m^2$ b) 1.03	$1 \times 10^3 N/m^2$	c) $1.01 \times 10^5 N/m^2$	d) $1.01 \times 10^7 N/m^2$
34.	An ideal gas ($\gamma = 1.5$) is expan			
	reduce the root mean square v			
	a) 4 times b) 16	times	c) 8 times	d) 2 times
35.	The quantity of heat required to	aise one mole thro	ough one degree kelvin for a	a monoatomic gas at
	constant volume is		7	
	a) $\frac{3}{2}R$ b) $\frac{5}{2}R$		c) $\frac{7}{2}R$	d) 4R
36.	Calculate the ratio of rms spee		2	ogen gas molecules kept
	at the same temperature.		schrittle, bethebes ervedschriftet. Virdsbist interpretische textes erzicht et di∎erbe-eb	
	a) 1:4 b) 1:8		c) 1:2	d) 1:6
37.	At constant pressure, the ratio of			rise in kelvin temperature
	to it's original volume is $(T = abs$	olute temperature		2500000000
20	a) T ² b) T	1 C (J 1	c) 1/T	d) $1/T^2$
38.	Pressure versus temperature gra $P \uparrow \qquad P \uparrow$	phs of an ideal gas	are as snown in figure. Cho	ose the wrong statement
	1 1 			
		—		
	(i) (ii) T	(iii)		
	a) Density of gas is increasing in	graph (i)	b) Density of gas is decre	asing in graph (ii)
	c) Density of gas is constant in gr	aph (iii)	d) None of these	
39.	A body takes 10 min to cool from		경기를 했다. 그는 이 이 회에 생각하는 규칙 회교는 경영에 보였다는 소리는 그렇게 되는 것 같아.	oundings is 25°C and 527°C
	respectively. The ratio of energy			1) 40 0505
40	a) 48°C b) 46°		c) 49°C	d) 42.85°C
40.	A cylinder of radius r and thermal and outer radius $2r$, whose therm	350 5		

		nbined system are maintair	hed at temperatures T_1 and	T_2 . The effective thermal
	conductivity of the syste	H. 16 1 (1.1.) - (1.	125 NY WATER	
	Service Distriction		c) $\frac{K_1 + 3K_2}{4}$	
41.	A gaseous mixture consis	sts of $16g$ of helium and $16g$	g of oxygen. The ratio $\frac{c_P}{c_P}$ of	the mixture is
	a) 1.4	b) 1.54	c) 1.59	d) 1.62
42.	Mean free path of a gas n	nolecule is		
	a) Inversely proportiona	l to number of molecules p	er unit volume	
	b) Inversely proportiona	l to diameter of the molecu	le	
	c) Directly proportional	to the square root of the ab	solute temperature	
	d) Directly proportional			
43.		two diatomic gases at cons	tant temperature and press	sure are d_1 and d_2 , then the
	ratio of speed of sound in	[1] 사용의 등 및 등 하다면 1대통령 기계를 하면 하면 보다 하다면 보다 하다. (ii)		em -
	a) $d_1 d_2$		c) $\sqrt{d_1/d_2}$	
44.	If the internal energy of	n_1 moles of He at temperati	are 10 T is equal to the inte	rnal energy of n_2 mole of
	hydrogen at temperature	e 6 T. the ratio of $\frac{n_1}{n_2}$ is		
	a) $\frac{3}{5}$	b) 2	c) 1	d) $\frac{5}{3}$
	3	1 (, , , , , , , , , , , , , , , , , ,	ma t subvention medical variations (Alberta Co	3
45.	The heat capacity per mo	ole of water is (R is univers	al gas constant)	
	a) 9 <i>R</i>	b) $\frac{9}{2}R$	c) 6R	d) 5 <i>R</i>
46.	If number of molecules of	of H_2 are double than that of	f O_2 , then ratio of kinetic en	ergy of hydrogen and that
	of oxygen at 300 K is			
0.2040	a) 1 : 1	b) 1 : 2	c) 2:1	d) 1 : 16
47.		ic theory of gases, the ten		7.7
	a) Velocities of its mole		b) Linear momenta of it	
	c) Kinetic energies of i		d) Angular momenta of	
48.		atmospheric pressure and i		
		an upto what temperature	should the bottle be heated	in order to remove the
	cork	b) 051°C	a) 6E19C	d) None of these
40	a) 325.5°C	b) 851°C th the average translational	c) 651°C	d) None of these
47.		accelerating from rest thro		
	a) $4.6 \times 10^3 K$	b) $11.6 \times 10^3 K$	c) $23.2 \times 10^3 K$	d) $7.7 \times 10^3 K$
50.	The average momentum	of a molecule in an ideal ga	s depends on	
	a) Temperature	b) Volume	c) Molecular mass	
51.	If pressure of CO ₂ (real g	gas) in a container is given l	by $P = \frac{RT}{2V-h} - \frac{a}{4h^2}$, then mass	s of the gas in container is
	a) 11 <i>g</i>	b) 22 <i>g</i>	c) 33 g	d) 44 g
52.	For an ideal gas of diator	nic molecules		
	a) $C_p = \frac{5}{2}R$	b) $C = \frac{3}{2}R$	c) $C_p - C_v = 2R$	d) $C = \frac{7}{2}R$
	4	-	c) =p =v =v	$a_j c_p - 2^{K}$
53.	What is the value of $\frac{R}{C_P}$ for	or diatomic gas		
			3.0.75	d) 5/7
	a) 3/4	b) 3/5	c) 2/7	-5 -1
54.	When volume of system	is increased two times and	. 25 15	
54.	When volume of system temperature, then press	is increased two times and ure becomes	temperature is decreased h	alf of its initial
54.	When volume of system	is increased two times and	temperature is decreased h	alf of its initial
	When volume of system temperature, then pressor a) 2 times	is increased two times and ure becomes b) 4 times	temperature is decreased here) $\frac{1}{4}$ times	talf of its initial d) $\frac{1}{2}$ times
	When volume of system temperature, then presson a) 2 times A vessel of volume 4 L co	is increased two times and ure becomes b) 4 times ontains a mixture of 8 g of o	temperature is decreased here) $\frac{1}{4}$ times	talf of its initial d) $\frac{1}{2}$ times
	When volume of system temperature, then pressor a) 2 times	is increased two times and ure becomes b) 4 times ontains a mixture of 8 g of o	temperature is decreased here) $\frac{1}{4}$ times	talf of its initial d) $\frac{1}{2}$ times

b) $6.79 \times 10^5 \text{ Nm}^{-2}$ a) $5.79 \times 10^5 \text{ Nm}^{-2}$ c) $7.79 \times 10^3 \text{ Nm}^{-2}$ d) $7.79 \times 10^5 \text{ Nm}^{-2}$ 56. 2 g of O_2 gas is taken at 27°C and pressure 76 cm. Hg. Find out volume of gas (in litre) c) 3.08 b) 2.44 57. When an air bubble of radius 'r' rises from the bottom to the surface of a lake, its radius becomes 5r/4(the pressure of the atmosphere is equal to the 10 m height of water column). If the temperature is constant and the surface tension is neglected, the depth of the lake is a) 3.53 m b) 6.53 m c) 9.53 m 58. At what temperature will the rms speed of air molecules be double than that at NTP? c) 719°C a) 519°C b) 619°C d) 819°C 59. The kinetic energy per g mol for a diatomic gas at room temperature is 60. The average kinetic energy of a gas at -23° C and 75 cm pressure is 5×10^{-14} erg for H_2 . The mean kinetic energy of the O2 at 227°C and 150 cm pressure will be b) $20 \times 10^{-14} erg$ d) $10 \times 10^{-14} erg$ a) $80 \times 10^{-14} erg$ c) $40 \times 10^{-14} erg$ 61. A monoatomic gas molecule has a) Three degrees of freedom b) Four degrees of freedom d) Six degrees of freedom c) Five degrees of freedom 62. Considering the gases to be ideal, the value of $\gamma = \frac{c_P}{c_V}$ for a gaseous mixture consisting of 3 moles of carbon dioxide and 2 moles of oxygen will be ($\gamma_{O_2}=1.4,\gamma_{CO_2}=1.3$) a) 1.37 d) 1.63 63. The change in volume V with respect to an increase in pressure P has been shown in the figure for a nonideal gas at four different temperatures T_1 , T_2 , T_3 and T_4 . The critical temperature of the gas is (0, 0)a) T_1 c) T_3 d) T_4 b) T_2 64. At a given temperature the ratio of r.m.s. velocities of hydrogen molecule and helium atom will be b) 1 : $\sqrt{2}$ c) 1:265. A vessel contains 14 g (7 moles) of hydrogen and 96 g (9 moles) of oxygen at STP. Chemical reaction is induced by passing electric spark in the vessel till one of the gases is consumed. The temperature is brought back to it's starting value 273 K. The pressure in the vessel is b) 0.2 atm c) 0.3 atm d) 0.4 atm 66. When the temperature of a gas is raised from 27° C to 90° C, the percentage increase in the r.m.s. velocity of the molecules will be b) 15% c) 20% d) 17.5% 67. One litre of oxygen at a pressure of 1 atm and two litres of nitrogen at a pressure of 0.5 atm, are introduced into a vessel of volume 1 L. If there is no change in temperature, the final pressure of the mixture of gas (in atm) is b) 2.5 a) 1.5 c) 2 d) 4 68. The power radiated by a black body is P, and it radiates maximum energy around the wavelength λ_0 . If the temperature of black body is now changed so that it radiates maximum energy around a wavelength $\lambda_0/4$, the power radiated by it will increase by a factor of

	4
a)	-

b)
$$\frac{16}{9}$$

c)
$$\frac{64}{27}$$

d)
$$\frac{256}{81}$$

69. Figure shows two flasks connected to each other. The volume of the flask 1 is twice that of flask 2. The system is filled with an ideal gas at temperature 100 K and 200 K respectively. If the mass of the gas in 1 be m then what is the mass of the gas in flask 2

a) m

- b) m/2
- c) m/4
- d) m/8

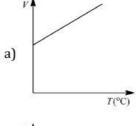
- 70. Under constant temperature, graph between P and 1/V is
 - a) Parabola
- b) Hyperbola
- c) Straight line
- d) Circle
- 71. A gas mixture consists of molecules of type 1,2 and 3, with molar masses $m_1 > m_2 > m_3$. V_{rms} and \overline{K} are the r.m.s. speed and average kinetic energy of the gases. Which of the following is true

a)
$$(V_{rms})_1 < (V_{rms})_2 < (V_{rms})_3$$
 and $(\overline{K})_1 = (\overline{K})_2 = (\overline{K}_3)$

b)
$$(V_{rms})_1 = (V_{rms})_2 \le (V_{rms})_3$$
 and $(\overline{K})_1 = (\overline{K})_2 > (\overline{K})_3$

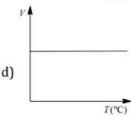
c)
$$(V_{rms})_1 > (V_{rms})_2 < (V_{rms})_3$$
 and $(\overline{K})_1 < (\overline{K})_2 > (\overline{K}_3)$

d)
$$(V_{rms})_1 > (V_{rms})_2 > (V_{rms})_3$$
 and $(\overline{K})_1 < (\overline{K})_2 < (\overline{K})_3$


- 72. The ratio of mean kinetic energy of hydrogen and nitrogen at temperature 300 K and 450 K respectively is a) 3:2b) 2:3c) 2:21
- 73. Equation of gas in terms of pressure (P), absolute temperature (T) and density (d) is

a)
$$\frac{P_1}{T_1 d_1} = \frac{P_2}{T_2 d_2}$$

b)
$$\frac{P_1T_1}{d_1} = \frac{P_2T_2}{d_2}$$


b)
$$\frac{P_1 T_1}{d_1} = \frac{P_2 T_2}{d_2}$$
 c) $\frac{P_1 d_2}{T_1} = \frac{P_2 d_1}{T_1}$

- d) $\frac{P_1 d_1}{T_1} = \frac{P_2 d_2}{T_2}$
- 74. On 0°C pressure measured by barometer is 760 mm. What will be pressure at 100°C
 - a) 760 mm
- b) 730 mm
- c) 780 mm
- d) None of these
- 75. The r.m.s. speed of the molecules of a gas in a vessel is $400 \, ms^{-1}$. If half of the gas leaks out, at constant temperature, the r.m.s. speed of the remaining molecules will be
 - a) $800 \, ms^{-1}$
- b) $400\sqrt{2} \ ms^{-1}$
- c) $400 \, ms^{-1}$
- d) $200 \, ms^{-1}$
- 76. Volume-temperature graph at atmospheric pressure for a monoatomic gas (V in m³, T in °C) is

b)

- 77. The temperature of argon, kept in a vessel, is raised by 1°C at a constant volume. The total heat supplied to the gas is a combination of translation and rotational energies. Their respective shares are
 - a) 60% and 40%
- b) 40% and 60%
- c) 50% and 50%
- 78. The molar heat capacity at constant volume of oxygen gas at STP is nearly $\frac{5R}{2}$ and it approaches $\frac{7R}{2}$ as the temperature is increased. This happens because at higher temperature
 - a) Oxygen becomes triatomic

- b) Oxygen does not behaves as an ideal gas
- c) Oxygen molecules rotate more vigorously
- d) Oxygen molecules start vibrating

- 79. Three containers of the same volume contain three different gases. The masses of the molecules are m_1 , m_2 and m_3 and the number of molecules in their respective containers are N_1 , N_2 and N_3 . The gas pressure in the containers are P_1 , P_2 and P_3 respectively. All the gases are now mixed and put in one of the containers. The pressure P of mixture will be

 - a) $P < (P_1 + P_2 + P_3)$ b) $P = \frac{P_1 + P_2 + P_3}{3}$
- c) $P = P_1 + P_2 + P_3$ d) $P > (P_1 + P_2 + P_3)$
- 80. If temperature of gas increases from 27°C to 927°C the K.E. will be
 - a) Double
- b) Half
- c) One fourth
- d) Four times
- 81. A mixture of 2 moles of helium gas (atomic mass = 4 amu), and 1 mole of argon gas (atomic mass = 40*amu*) is kept at 300*K* in a container. The ratio of the *rms* speeds $\left[\frac{V_{rms}(\text{helium})}{V_{rms}(\text{argon})}\right]$ is
- b) 0.45

- 82. The value of the gas constant (R) calculated from the perfect gas equation is 8.32 joules/g mole K, whereas its value calculated from the knowledge of C_P and C_V of the gas is 1.98 cal/g mole K. From this data, the value of J is
 - a) 4.16]/cal
- b) 4.18 *J/cal*
- c) 4.20 *J/cal*
- d) 4.22]/cal

- 83. S.I. unit of universal gas constant is
 - a) cal/°C
- b) 1/mol
- c) $I \, mol^{-1} K^{-1}$

- 84. In Boyle's law what remains constant
 - a) PV

b) TV

- 85. To what temperature should the hydrogen at 327°C be cooled at constant pressure, so that the root mean square velocity of its molecules becomes half of its previous value?
 - a) -123°C
- b) 123°C
- c) -100°C
- d) 0°C
- 86. Two gases A and B having same pressure p, volume V and absolute temperature T are mixed. If the mixture has the volume and temperature as V and T respectively, then the pressure of the mixture is
 - a) 2p

b) p

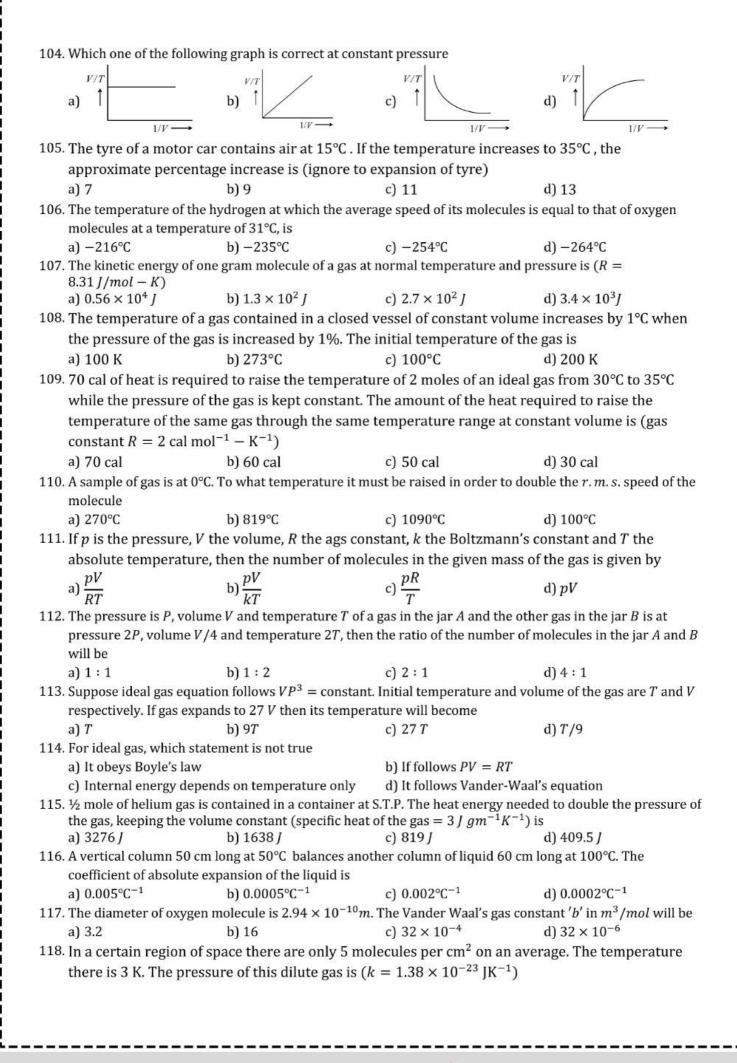
- 87. The density (ρ) versus pressure (P) of a given mass of an ideal gas is shown at two temperatures T_1 and T_2

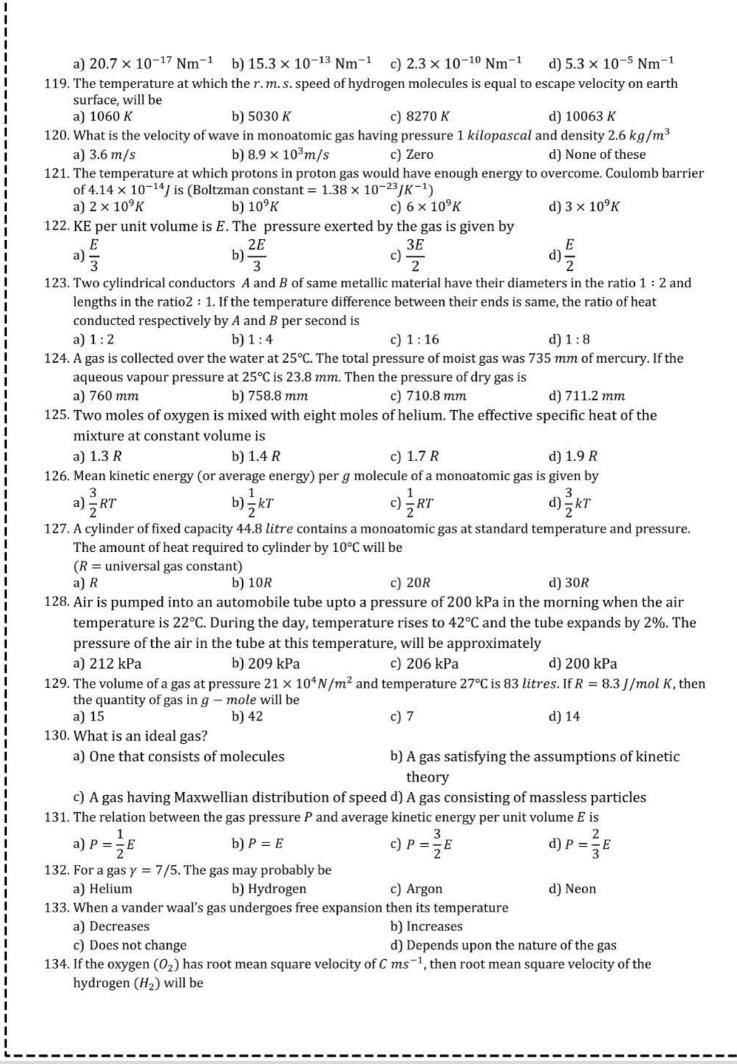
Then relation between T_1 and T_2 may be

a) $T_1 > T_2$

b) $T_2 > T_1$

c) $T_1 = T_2$


- d) All the three are possible
- 88. The gas in vessel is subjected to a pressure of 20 atmosphere at a temperature 27°C. The pressure of the gas in a vessel after one half of the gas is released from the vessel and the temperature of the remainder is raised by 50°C is
 - a) 8.5 atm
- b) 10.8 atm
- c) 11.7 atm
- d) 17 atm
- 89. On any planet, the presence of atmosphere implies (C_{rms} = root mean square velocity of molecules and V_e = escape velocity)
 - a) $C_{rms} << V_e$
- b) $C_{rms} > V_e$
- c) $C_{rms} = V_e$
- d) $C_{rms} = 0$
- 90. The degrees of freedom of a stationary rigid body about its axis will be
 - a) One
- b) Two
- c) Three
- d) Four


91. From the following V - T diagram we can conclude

CLICK HERE

	a) (C r	ns
5.	A g	as	at
	per	ce	nt
	-1	1	01

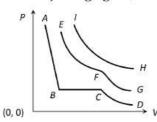
b)
$$\frac{1}{C} m s^{-1}$$

c)
$$4C \ ms^{-1}$$

d)
$$\frac{C}{4}ms^{-1}$$

- t the temperature $250 \, K$ is contained in a closed vessel. If the gas is heated through 1 K, then the 135 tage increase in its pressure will be
- b) 0.2%
- c) 0.1%
- d) 0.8%
- 136. To what temperature should the hydrogen at room temperature (27°C) be heated at constant pressure so that the R.M.S. velocity of its molecules becomes double of its previous value
 - a) 1200°C
- b) 927°C
- d) 108°C
- 137. Consider a collection of a large number of particles each with speed v. The direction of velocity is randomly distributed in the collection. What is the magnitude of the relative velocity between a pairs in the collection
 - a) $2V/\pi$
- b) V/π
- c) 8V/\pi
- d) $4V/\pi$
- 138. A pressure cooker contains air at 1 atm and 30°C. If the safety value of the cooler blows when the inside pressure ≥ 3 atm, then the maximum temperature of the air, inside the cooker can be
 - a) 90°C

- 139. The value of $\frac{pV}{T}$ for one mole of an ideal gas is nearly equal to
 - a) 2 J mol⁻¹ K⁻¹
- b) 8.3 J mol⁻¹ K⁻¹
- c) 4.2 J mol⁻¹ K⁻¹
- d) $2 \text{ cal mol}^{-1} \text{ K}^{-1}$
- 140. $CO_2(O-C-O)$ is a triatomic gas. Mean kinetic energy of one gram gas will be (If N-Avogadro's number, k-Boltzmann's constant and molecular weight of $CO_2 = 44$)
 - a) (3/88)NkT
- b) (5/88)NkT
- c) (6/88)NkT
- d) (7/88)NkT
- 141. To double the volume of a given mass of an ideal gas at 27°C keeping the pressure constant, one must raise the temperature in degree centigrade to
 - a) 54°


- b) 270°
- c) 327°
- d) 600°
- 142. The following sets of values for C_V and C_P of a gas has been reported by different students. The units are cal/g-mole-K. Which of these sets is most reliable
 - a) $C_V = 3$, $C_P = 5$
- b) $C_V = 4$, $C_P = 6$
- c) $C_V = 3$, $C_P = 2$
- d) $C_V = 3$, $C_P = 4.2$
- 143. At what temperature is the root mean square velocity of gaseous hydrogen molecules equal to that of oxygen molecules at 47°C
 - a) 20 K
- b) 80 K
- c) -73 K
- d) 3 K

- 144. Molecules of a gas behave like
 - a) Inelastic rigid sphere

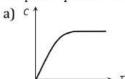
b) Perfectly elastic non-rigid sphere

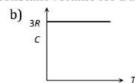
c) Perfectly elastic rigid sphere

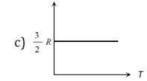
- d) Inelastic non-rigid sphere
- 145. A cylinder contains 10 kg of gas at pressure of $10^7 N/m^2$. The quantity of gas taken out of the cylinder, if final pressure is $2.5 \times 10^6 N/m^2$, will be (Temperature of gas is constant)
- b) $3.7 \, kg$
- c) Zero
- d) 7.5 kg
- 146. In the adjoining figure, various isothermals are shown for a real gas. Then

a) EF represents liquification

- b) CB represents liquification
- c) HI represents the critical temperature
- d) AB represents gas at a high temperature
- 147. One mole of an ideal monoatomic gas requires 210 / heat to raise the temperature by 10K, when heated at constant temperature. If the same gas is heated at constant volume to raise the temperature by 10K then heat required is
- b) 126 /

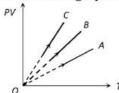

- 148. The ratio of root mean square velocity of O_3 and O_2 is
 - a) 1:1
- b) 2:3
- c) 3:2


d) $\sqrt{2} : \sqrt{3}$



- 149. At a given temperature the r. m. s. velocity of molecules of the gas is

 - b) Proportional to molecular weight
 - c) Inversely proportional to molecular weight
 - d) Inversely proportional to square root of molecular weight
- 150. Graph of specific heat at constant volume for a monoatomic gas is



151. PV versus T graph of equal masses of H_2 , He and O_2 is shown in fig. Choose the correct alternative

- a) C corresponds to H_2 , B to He and A to O_2
- b) A corresponds to He, B to H_2 and C to O_2
- c) A corresponds to He, B to O_2 and C to H_2
- d) A corresponds to O_2 , B to H_2 and C to He
- 152. Which of the following cylindrical rods will conduct maximum heat, when their ends are maintained at a constant temperature difference?

a)
$$l = 1m, r = 0.2m$$

b)
$$l = 1$$
m, $r = 0.1$ m

c)
$$l = 10 \text{m}, r = 0.1 \text{m}$$

d)
$$l = 0.1 \text{m}, r = 0.3 \text{m}$$

153. A container with insulating walls is divided into two equal parts by a partition fitted with a value. One part is filled with an ideal gas at a pressure p and temperature T, whereas the other part is completely evacuated. If the valve is suddenly opened, the pressure and temperature of the gas will be

a)
$$\frac{p}{2}$$
, T

b)
$$\frac{p}{2}$$
, $\frac{T}{2}$

d)
$$p, \frac{T}{2}$$

154. Four molecules of a gas have speeds 1, 2, 3 and 4 kms⁻¹. The value of rms speed of the gas molecules is

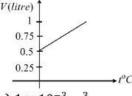
a)
$$\frac{1}{2}\sqrt{15} \text{ kms}^{-1}$$

a)
$$\frac{1}{2}\sqrt{15} \text{ kms}^{-1}$$
 b) $\frac{1}{2}\sqrt{10} \text{ kms}^{-1}$ c) 2.5 kms^{-1}

d)
$$\sqrt{\frac{15}{2}} \text{ kms}^{-1}$$

- 155. A body cools from 50°C to 40°C in 5 min. Its temperature comes down to 33.33°C in next 5 min. The temperature of surroundings is
 - a) 15°C
- b) 20°C
- c) 25°C
- d) 10°C

- 156. Which of the following statements is true
 - a) Absolute zero degree temperature is not zero energy temperature
 - b) Two different gases at the same temperature pressure have equal root mean square velocities
 - c) The root mean square speed of the molecules of different ideal gases, maintained at the same temperature are the same
 - d) Given sample of 1 cc of hydrogen and 1 cc of oxygen both at NTP; oxygen sample has a large number of
- 157. The figure below shows the plot of $\frac{pV}{nT}$ versus p for oxygen gas at two different temperatures.



Read the following statements concerning the above curves.

- The dotted line corresponds to the ideal gas behavior
- II. $T_1 > T_2$
- III. The value of $\frac{pV}{nT}$ at the point where the curves meet on the y-axis is the same for all gases.
- a) (i) only
- b) (i) and (ii) only
- c) All of these
- d) None of these

- 158. The absolute temperature of a gas is determined by
 - a) The average momentum of the molecules
- b) The velocity of sound in the gas
- c) The number of molecules in the gas
- d) The mean square velocity of the molecules
- 159. If V_H , V_N and V_0 denote the root –mean square velocities of molecules of hydrogen, nitrogen and oxygen respectively at a given temperature, then
 - a) $V_N > V_O > V_H$
- b) $V_H > V_N > V_O$
- c) $V_O = V_N = V_H$
- d) $V_O > V_H > V_N$
- 160. Air inside a closed container is saturated with water vapour. The air pressure is p and the saturated vapour pressure of water is \bar{p} . If the mixture is compressed to one half of its volume by maintaining temperature constant, the pressure becomes
 - a) $2(p + \bar{p})$
- b) $(2p + \bar{p})$
- c) $(p + \bar{p}/2)$
- d) $p + 2\bar{p}$
- 161. The average kinetic energy of a gas molecule can be determined by knowing
 - a) The number of molecules in the gas
- b) The pressure of the gas only
- c) The temperature of the gas only
- d) None of the above is enough by itself
- 162. Volume, pressure and temperature of an ideal gas are V, P and T respectively. If mass of its molecule is m, then its density is [k = boltzmann's constant]

- 163. One kg of a diatomic gas is at a pressure of 8×10^4 Nm⁻². The density of the gas is 4 kgm^{-3} . What is the energy of the gas due to its thermal motion?
 - a) 3×10^4 J
- b) $5 \times 10^4 \, \text{J}$
- c) 6×10^4 J
- 164. Graph between volume and temperature for a gas is shown in figure. If $\alpha=$ volume coefficient of gas = $\frac{1}{273}$ per°C, then what is the volume of gas at a temperature of 819°C

- a) $1 \times 10^{-3} m^3$
- b) $2 \times 10^{-3} m^3$
- c) $3 \times 10^{-3} m^3$
- d) $4 \times 10^{-3} m^3$
- 165. A lead bullet of 10 g travelling at 300 ms⁻¹ strikes against a block of wood comes to rest. Assuming 50% of heat is absorbed by the bullet, the increase in is temperature is (Specific heat of lead = $150 \, \mathrm{JkgK^{-1}}$)
- b) 125°C
- c) 150°C
- 166. When the pressure on 1200 ml of a gas in increased from 70 cm to 120 cm of mercury at constant temperature, the new volume of the gas will be
 - a) 700 ml
- b) 600 ml
- c) 500 ml
- d) 400 ml

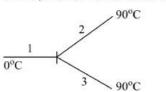
167. At constant temp	erature on increasing the pr	essure of a gas by 5% its y	olume will decrease by
2) 5%	b) 5 26%	c) 4.26%	d) 4.76%

168. The average kinetic energy of a helium atom at 30°C is

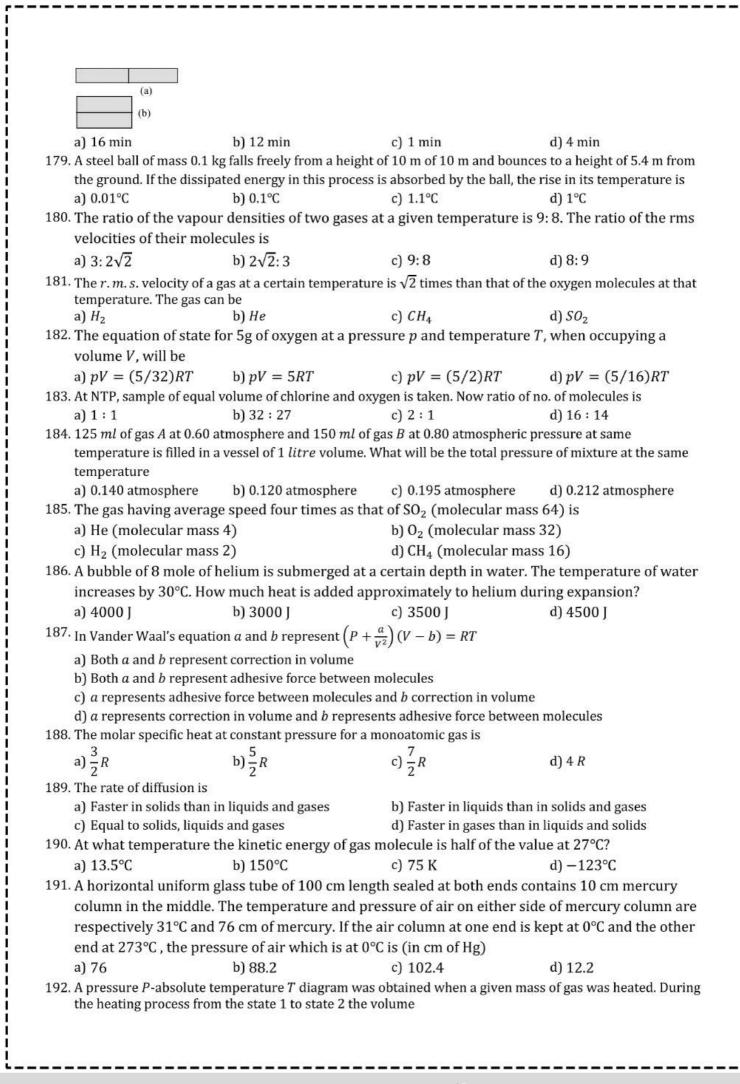
- a) Less than 1 eV b) A few keV c) $50 - 60 \, eV$ d) 13.6 eV
- 169. A diatomic gas is heated at constant pressure. What fraction of the heat energy is used to increase the thermal energy

170. The molecules of a given mass of a gas have a rms velocity of 200 m/s at 27°C and 1.0×10^5 N/m² pressure. When the temperature is 127° C and pressure is 0.5×10^{5} N/m², the rms velocity in m/s

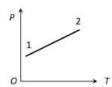
a)
$$\frac{100\sqrt{2}}{3}$$
 b) $100\sqrt{2}$ c) $\frac{400}{\sqrt{3}}$ d) None of these


171. Three perfect gases at absolute temperature T_1 , T_2 and T_3 are mixed. The masses of molecules are m_1, m_2 and m_3 and the number of molecules are n_1, n_2 and n_3 respectively. Assuming no loss of energy, the final temperature of the mixture is

a)
$$\frac{n_1T_1 + n_2T_2 + n_3T_3}{n_1 + n_2 + n_3}$$
b)
$$\frac{n_1T_1^2 + n_2T_2^2 + n_3T_3^2}{n_1T_1 + n_2T_2 + n_3T_3}$$
c)
$$\frac{n_1^2T_1^2 + n_2^2T_2^2 + n_3^2T_3^2}{n_1T_1 + n_2T_2 + n_3T_3}$$
d)
$$\frac{T_1 + T_2 + T_3}{3}$$

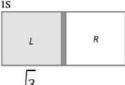

172. The density of a substance at 0°C is 10 g/cc and at 100°C, its density is 9.7 g/cc. The coefficient of linear expansion of the substance is

a)
$$10^{-4} \, {}^{\circ}\text{C}^{-1}$$
 b) $10^{-2} \, {}^{\circ}\text{C}^{-1}$ c) $10^{-3} \, {}^{\circ}\text{C}^{-1}$ d) $10^2 \, {}^{\circ}\text{C}^{-1}$


- 173. Molecular motion shows itself as
 - a) Temperature b) Internal Energy c) Friction d) Viscosity
- 174. Three rods made of same material and having same cross-section have been joined as shown in figure. Each rod is of same length. The left and right ends are kept at 0°C and 90°C respectively. The temperature of the junction of the three rods will be

- b) 60°C c) 30°C d) 20°C
- 175. An air bubble of volume 1.0 cm^3 rises from the bottom of a lake 40m deep at a temperature of 12° C. The volume of the bubble when it reaches the surface, which is at a temperature of 35°C, will be a) 5.4 cm^3 b) $4.9 cm^3$ c) $2.0 \ cm^3$ d) $10.0 \ cm^3$
- 176. The mean kinetic energy of a gas at 300 K is 100 J. The mean energy of the gas at 450 K is equal to
- b) 3000 / c) 450 / a) 100 / 177. Two identical vessels A and B with frictionless pistons conatin the same ideal gas at the same temperature and the same volume V. The masses of gas in A and B are m_A and m_B respectively.
- The gases are allowed to expand isothermally to same final volume 2 V. The change in pressures of the gas in *A* and *B* are found to be Δp and 1.5 Δp respectively. Then
- a) $9m_A = 4m_B$ b) $3m_A = 2m_B$ c) $2m_A = 3m_B$ d) $4m_A = 9m_B$ 178. The identical square rods of metal are welded end to end as shown in figure, Q cal of heat flow through this combination in 4 min. If the rods were welded as shown in figure, the same amount of heat will flow through the combination in

- a) Remained constant
- b) Decreased
- c) Increased
- d) Changed erratically
- 193. If mass of He atom is 4 times that of hydrogen atom then mean velocity of He is
 - a) 2 times of H-mean value

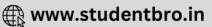

b) 1/2 times of H-mean value

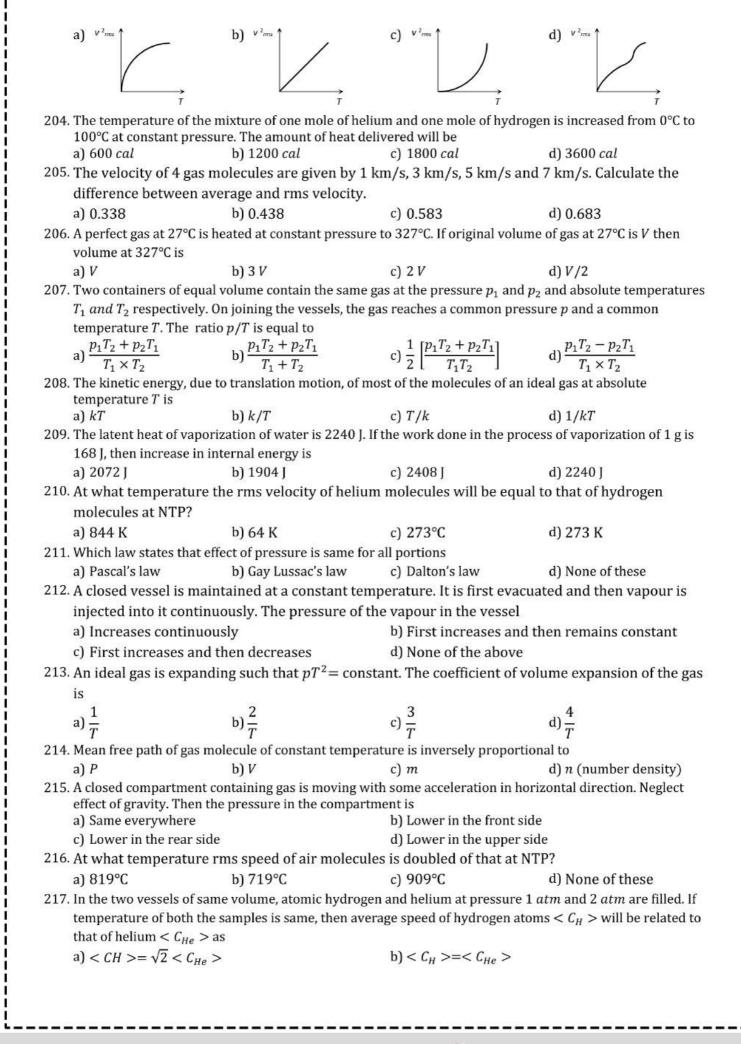
c) 4 times of H-mean value

- d) Same as H-mean value
- 194. r. m. s. velocity of nitrogen molecules at NTP is
 - a) $492 \, m/s$
- b) $517 \, m/s$
- c) $546 \, m/s$
- d) 33 m/s
- 195. Two gases of equal mass are in thermal equilibrium. If P_a , P_b and V_a and V_b are their respective pressure and volumes, then which relation is true

 - a) $P_a \neq P_b$; $V_a = V_b$ b) $P_a = P_b$; $V_a \neq V_b$ c) $\frac{P_a}{V_a} = \frac{P_b}{V_b}$
- d) $P_a V_a = P_b V_b$
- 196. The ratio of the molar heat capacities of a diatomic gas at constant pressure to that at constant volume is

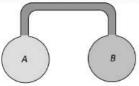
- 197. It is seen that in proper ventilation of building, windows must be opened near the bottom and the top of the walls, so as to let pass
 - a) In hot near the roof and cool air out near theb) Out hot air near the roof
 - c) In cool air near the bottom and hot air our
- d) In more air
- near the roof
- 198. A vessel is partitioned in two equal halves by a fixed diathermic separator. Two different ideal gases are filled in left (L) and right (R) halves. The rms speed of the molecules in L part is equal to the mean speed of molecules in the R part. Then the ratio of the mass of a molecule in L part to that of a molecule in R part




- b) $\sqrt{\pi/4}$
- c) $\sqrt{2/3}$
- d) $3\pi/8$

- 199. An ideal gas is filled in a vessel, then
 - a) If it is placed inside a moving train, its temperature increases
 - b) Its centre of mass moves randomly
 - c) Its temperature remains constant in a moving car
 - d) None of these
- ^{200.} If one mole of a monoatomic gas $\left(\gamma = \frac{5}{3}\right)$ is mixed with one mole of a diatomic gas $\left(\gamma = \frac{7}{5}\right)$, the value of y for the mixture is
 - a) 1.40
- b) 1.50
- c) 1.53
- d) 3.07
- 201. The kinetic energy of one g-mole of a gas at normal temperature and pressure is (R = 8.31 J/mol K)
 - a) 0.56×10^4
- b) 1.3×10^2
- c) $2.7 \times 10^2 J$
- d) $3.4 \times 10^3 I$
- 202. 1 mol of gas occupies a volume of 200 mL at 100 mm pressure. What is the volume occupied by two moles of gas at 400 mm pressure and at same temperature?
 - a) 50 mL
- b) 100 mL
- c) 200 mL
- d) 400 mL

203. The curve between absolute temperature and v_{rms}^2 is



c)
$$< C_H > = 2 < C_{He} >$$

$$d) < C_H > = \frac{< C_{He} >}{2}$$

218. Two spherical vessel of equal volume, are connected by a α narrow tube. The apparatus contains an ideal gas at one atmosphere and 300K. Now if one vessel is immersed in a bath of constant temperature 600Kand the other in a bath of constant temperature 300K. Then the common pressure will be

a) 1 atm

- b) $\frac{4}{5}$ atm
- c) $\frac{4}{2}$ atm
- 219. At constant volume the specific heat of a gas is $\frac{3R}{2}$, then the value of ' γ ' will be

d) None of the above

220. Gas at a pressure P_0 in contained is a vessel. If the masses of all the molecules are halved and their speeds are doubled, the resulting pressure P will be equal to

a) $4P_0$

b) $2P_0$

c) P_0

221. The translational kinetic energy of gas molecule for one mole of the gas is equal to

c) $\frac{1}{2}RT$

222. The product of the pressure and volume of an ideal gas is

a) A constant

b) Approx. equal to the universal gas constant

c) Directly proportional to its temperature

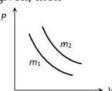
- d) Inversely proportional to its temperature
- 223. The diameter of oxygen atom is 3Å. The fraction of molecular volume to the actual volume occupied by oxygen at STP is

a) 6×10^{-28}

b) 8×10^{-4}

c) 4×10^{-10}

d) 4×10^{-4}


224. A gas is allowed to expand isothermally. The root mean square velocity of the molecules

a) Will increase

b) Will decrease

c) Will remain unchanged

- d) Depends on the other factors
- 225. Two different isotherms representing the relationship between pressure p and volume V at a given temperature of the same ideal gas are shown for masses m_1 and m_2 of the gas respectively in the figure given, then

a) $m_1 > m_2$

- b) $m_1 = m_2$
- c) $m_1 < m_2$
- d) $m_1 > m_2$
- 226. At 100 K and 0.1 atmospheric pressure, the volume of helium gas is 10 litres. If volume and pressure are doubled, its temperature will change to

a) 400 K

- b) 127 K
- c) 200 K
- d) 25 K
- 227. Two balloons are filled, one with pure He gas and the other by air, respectively. If the pressure and temperature of these balloons are same, then the number of molecules per unit volume is
 - a) More in the He filled balloon
- b) Same in both balloons

c) More in air filled balloon

- d) In the ratio of 1:4
- 228. If the rms velocity of a gas is v, then
 - a) $v^2T = \text{constant}$

b) $v^2/T = constant$

c) $vT^2 = \text{constant}$

d) v is independent of T

229. The ratio of two specific heats $\frac{c_P}{c_V}$ of CO is		
a) 1.33 b) 1.40	c) 1.29	d) 1.66
230. A gas is filled in a closed container and its molec		- POPE 1930 1930 12- 10- 40
uniform acceleration. Neglecting acceleration d	~	
a) Uniform everywhere	b) Less in the front	re morae the container is
c) Less at the back	d) Less at the top	
231. A closed gas cylinder is divided into two parts by a p	청에지 있다면서 있어? 사람이 하다가 뭐야?	ouro and volume of gas in
two parts respectively are $(P, 5V)$ and $(10P, V)$. If no		
isothermal process, then the volume of the gas in tw		, , , , , , , , , , , , , , , , , , , ,
a) 2V, 4V b) 3V, 3V	c) 5V, V	d) 4V, 2V
232. On colliding in a closed container the gas molecules		
a) Transfer momentum to the walls	b) Momentum becomes	
c) Move in opposite directions	d) Perform Brownian m	
233. A sealed container with negligible coefficient of volu		
gas). When it is heated from $300 K$ to $600 K$, the average a) Halved	b) Unchanged	IS
c) Doubled	d) Increased by factor √	7
234. A monoatomic gas is kept at room temperature 300	[2] [2] [2] [3] [3] [3] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4	
(Use $k = 1.38 \times 10^{-23} MKS$ units)	N. Galculate the average Ki	nede energy of gas morecure
a) 0.138eV b) 0.062eV	c) 0.039eV	d) 0.013eV
235. When the temperature of a gas increases by 1°C	, its pressure increases	0.4%. What is its initial
temperature?		
a) 250 K b) 125 K	c) 195 K	d) 329 K
236. A bubble is at the bottom of the lake of depth h .	As the bubble comes to	sea level, its radius
increases three times. If atmospheric pressure i		
to	an a ana 1.	**************************************
a) 26 <i>l</i> b) <i>l</i>	c) 25 <i>l</i>	d) 30 <i>l</i>
237. A diatomic gas molecule has translational, rotationa		
a) 1.67 b) 1.4	c) 1.29	d) 1.33
238. In the absence of intermolecular forces of attract	ction, the observed press	sure p will be
a) p b) $< p$	c) > <i>p</i>	d) Zero
239. At 0 K which of the following properties of a gas wil	l be zero	
a) Kinetic energy b) Potential energy	c) Vibrational energy	d) Density
240. The equation for an ideal gas is $PV = RT$, where V re	epresents the volume of	
a) 1 g gas b) Any mass of the gas	c) One g mol gas	d) One litre gas
241. A gas at 27°C has a volume V and pressure P. On hea		ed and volume becomes
three times. The resulting temperature of the gas wi		
a) 1800°C b) 162°C	c) 1527°C	d) 600°C
242. The figure shows the volume <i>V</i> versus temperature		
constant pressures of P_1 and P_2 . What inference can	you draw from the graphs	• 1
θ_1 ρ_1		
<u> </u>		
a) $P_1 > P_2$	b) $P_1 < P_2$	1
c) $P_1 = P_2$	373	e drawn due to insufficient
243. For hydrogen gas $C_P - C_V = a$ and for oxygen gas C_P	information $-C_{-} = h$. So the relation	hetween a and his given by
a) $a = 16b$ b) $b = 16a$		사용하다 아이들 것들이 많아 하시고 있다면 하나 하는 사람들이 되었다. 나는 아이를 바꾸어 있다면 하나 나를 가득하다.

244. For a real gas (van de	r Waal's gas)		
a) Boyle temperature	is a/Rb		
b) Critical temperatur	e is a/Rb		
c) Triple temperature			
d) Inversion temperat			
245. According to the kinetic		velocity of gas molecules is	directly proportional to
a) T	b) \sqrt{T}	c) T ²	d) $1/\sqrt{T}$
246. Root mean square veloc			
r.m.s. velocity becomes	D D D	are r. ii pressure is increa.	sea two times, then the
a) 2 v	b) 3 v	c) 0.5 v	d) v
247. The average translation		AND	C-71015
[Boltzmann's constant h		9 8	
a) 0.186×10^{-20} Joule	b) 0.372×10^{-20} Joule	c) $0.56 \times 10^{-20} Joule$	d) 5.6×10^{-20} Joule
248. The efficiency of a Carn	ot engine is 50% and tempe	rature of sink is 500 K. If te	mperature of source is kept
constant and its efficien	cy raised to 60%, then the r	equired temperature of sin	k will be
a) 100 K	b) 600 K	c) 400 K	d) 500 K
249. The temperature of a	given mass is increased fr	om 27°C to 327°C . The r	ms velocity of the
molecules increases			
a) $\sqrt{2}$ times	b) 2 times	c) $2\sqrt{2}$ times	d) 4 times
250. A real gas behaves lik	e an ideal gas if its	es um la commence de sociedades de medicales.	
a) Pressure and temp	77/A	b) Pressure and tempe	rature are both low
c) Pressure is high an		d) Pressure is low and	
251. A gas mixture consists			•
	total internal energy of the	en in de la president de la company de la president de la pre	peracure 1. Neglecting an
a) 4 RT	b) 15 <i>RT</i>	c) 9 <i>RT</i>	d) 11 <i>RT</i>
		32# 365 Steeles	and the first and the second
252. Six moles of O ₂ gas is		0.70	
	$R = 1 \text{ cal mol}^{-1} - K^{-1} \text{ and } R = 1$	8.31 Jmol 1 – K 1, wna	t is change in internal
energy of gas?	13.000		N. W. W. W.
a) 180 cal	b) 300 cal	c) 360 cal	d) 540 cal
253. Read the given statemen	트 없음을 하는 사람이 이 전에 가게 되었습니다. 아이스 얼마나 보는 사람들이 보고 있는 사람들이 보고 있는데 보고 있는데 보다 다른 사람들이 되었습니다. 그리고 보다 보다 보다 모든 사람들이 되었습니다. 그리고 보다		etic theory of gases
	ule at absolute temperature ferent gases are same at san		
	ideal gas kinetic energy is s		
	ideal gases mean kinetic en		erature
a) All are correct	b) I and IV are correct	c) IV is correct	d) None of these
254. A perfect gas at 27°C i	s heated at constant pres	sure so as to double its v	olume. The increase in
temperature of the ga	s will be		
a) 300°C	b) 54°C	c) 327°C	d) 600°C
255. Cooking gas containers	are kept in a lorry moving v	vith uniform speed. The ten	nperature of the gas
molecules inside will			
a) Increase		b) Decrease	
c) Remain same		d) Decrease for some, wh	nile increase for others
256. The root mean square s			
(ST) (S)	essure but directly proporti	(177)	
57	l to the square roots of both		
아래를 하셨다면서 경기를 구입하는 이 느껴 되어 되었다면 그 모든 사람들이 되었다.	essure but directly proporti	그리는 교기를 잃었다. 그 그리가 교사 사람들이 하고 있다고 하는 사람이 없었다.	ts Kelvin temperature
d) Directly proportiona	l to both its pressure and its	kelvin temperature	

CLICK HERE >>>

257	The mean kinetic energ	y of one mole of gas per o	degree of freedom (on th	e basis of kinetic theory
	of gases) is			
	a) $\frac{1}{2} kT$	b) $\frac{3}{2} k T$	c) $\frac{3}{2} R T$	$\frac{1}{R}$
	2	2	4	2
258				I of constant volume, the n the figure as <i>A</i> and <i>B</i> . The
	A A A A A A A A A A			
	a) 3:1	b) 1:3	c) 9:1	d) 1:9
259	. Mean kinetic energy per c	degree of freedom of gas mo	olecules is	
	a) $\frac{3}{2}kT$	b) <i>kT</i>	c) $\frac{1}{2}kT$	d) $\frac{3}{2}RT$
260	4	27°C is mixed in a closed co	2	4
		then the temperature of th		arator di il botti gabes are
	a) 24.2°C	b) 28.5°C	c) 31.5°C	d) 33.5°C
261	. 70 cal of heat are required	d to raise the temperature o	of 2 mole of an ideal gas at	constant pressure from
		of heat required to raise th	ting the property of the second but the substitute of the second but the second second but the second secon	
		nt volume is nearly (Gas cor		
2/2	a) 30 cal	b) 50 cal	c) 70 cal	d) 90 cal
262	. Which of the following for	1/ D		
	a) $C_V = \frac{R}{\gamma - 1}$	b) $C_P = \frac{r^{R}}{r-1}$	c) $C_P/C_V = \gamma$	$d) C_P - C_V = 2R$
263	. Ideal gas and real gas has			
	a) Phase transition	b) Temperature	c) Pressure	d) None of them
264	If mass of He is 4 times	that of hydrogen, then m	ean velocity of He is	
	a) 2 times of H-mean va			
	b) $\frac{1}{2}$ times of H-mean va	lue		
	c) 4 times of H-mean va			
	d) Same as H-mean valu	ie		
265	. Supposing the distance be	etween the atoms of a diato	mic gas to be constant, its	specific heat at constant
	volume per mole (gram n			
	a) $\frac{5}{2}R$	b) $\frac{3}{2}R$	c) R	d) $\frac{1}{2}R$
266	4	2 ne kinetic energy of a gas mo		4
200	a) 54°C	b) 300 <i>K</i>	c) 327°C	d) 108°C
267				ient of cubical expansion of
	mercury is 180×10^{-6} °C	$^{-1}$ and that of glass is 40×1	0^{-6} °C $^{-1}$.	
	로 보통하는 경기를 받는 것을 하는 것이 되었다. 그 것은 것이 되었다면 보고 있는 것이 되었다. 그 것이 되었다. 그 것이 되었다. 그 것이 되었다. 그 것은 것이 없는 것이 없는 것이 없는 것이 사람들이 되었다. 그 것이 되었다면 보다 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다면 보다 없다. 그 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다면	in boiling water at 100°C, h		
0.00	a) 7 cc	b) 14 cc	c) 21 cc	d) 28 cc
268		y the gas on the walls of the		
	a) It loses kinetic energyc) On collision with the w	ralle there is a change in	b) It sticks with the wallsd) It is accelerated toward	te the walls
	momentum	and there is a change in	a, it is accelerated toward	as the wans
269		of helium at 27°C and 1 at	mosphere pressure. The vo	olume of the helium at -3°C
	temperature and 0.5 atmo		un en veru ver 2. ♣ 1000 disso rigerater - ♣ veta til All til trapation (1.5,500) - 100 (1.5,500) (1.5,500)	

a) $v \propto \sqrt{\rho}$	b) $v \propto \frac{1}{\rho}$	c) $v \propto \rho$	d) $v \propto \frac{1}{\sqrt{\rho}}$	
275. A vessel contain	s 32 g of O_2 at a temperate	ure T. The pressure of th	ne gas is p. An identical ve	essel
containing 4 g o	f $\rm H_2$ at a temperature 2 T h	as a pressure of		
a) 8 p	b) 4 p	c) <i>p</i>	d) $\frac{p}{8}$	
276. Root mean squa	re speed of the molecules	of ideal gas is v. If press	ture is increased two time	es at
constant temper	rature, the rms speed will	become		
a) $\frac{v}{2}$	b) <i>v</i>	c) 2 <i>v</i>	d) 4v	
277. Relationship betw	ween P , V , and E for a gas is			
a) $P = \frac{3}{2}EV$	b) $V = \frac{2}{3}EP$	c) $PV = \frac{3}{2}E$	d) $PV = \frac{2}{3}E$	

279. The temperature of an ideal gas is increased from 27°C to 127°C, then percentage increase in V_{rms} is

280. The coefficiency of apparent expansion of a liquid when determined using two different vessels

281. A steel tape measures the length of a copper rod as 90.0 cm, when both are at 10°C, the calibration

b) $C_P - C_V = R$

b) 11%

 α for steel 1.2 × 10⁻⁵°C⁻¹ and α for copper is 1.7 × 10⁻⁵°C⁻¹. b) 89.90 cm

282. According to the kinetic theory of gases, at absolute temperature

b) $700 \, m^3$

b) He

c) Heated in the beginning and cooled towards the

274. At constant pressure, which of the following is true?

subjected to temperature changes. During this process the gas is

processes start and end on the same isotherm

c) $900 \, m^3$

c) C

c) N_2

end

c) $C_P/C_V = R$

c) 33%

c) $\frac{\gamma_1 - \gamma_2 + \alpha}{3\alpha}$

A and B are λ_1 and λ_2 , respectively. If the coefficient of linear expansion of the vessel A is α , the coefficient

temperature, for the tape. What would be tape read for the length of the rod when both are at 30°C. Given,

b) Cooled continuously

270. An ideal gas has an initial pressure of 3 pressure units and an initial volume of 4 volume units. The table gives the final the final pressure and volume of the gas (in those same units) in four, processes. Which

273. A volume V and pressure P diagram was obtained from state 1 to state 2 when a given mass of a gas is

271. Specific heats of monoatomic and diatomic gases are same and satisfy the relation which is

a) $C_p(mono) = C_p(dia)$ b) $C_p(mono) = C_v(dia)$ c) $C_v(mono) = C_v(dia)$

272. The root mean square velocity of gas molecules at 27°C is 1365 ms⁻¹. The gas is

d) $1000 \, m^3$

d) D

d) Cooled in the beginning and heated towards the

d) $C_v(mono) = C_p(dia)$

d) 89.80 cm

d) $C_V/C_P = R$

d) 15.5%

d) $\frac{\gamma_1 - \gamma_2}{3} + \alpha$

a) $500 \, m^3$

a) 0_2

a) Heated continuously

278. The specific heat relation for ideal gas is

of linear expansion of vassel B is

a) $C_P + C_V = R$

a) 37%

a) $\frac{\alpha \gamma_1 \gamma_2}{\gamma_1 + \gamma_2}$

a) 90.01 cm

The respectively diatomic, $\frac{7}{2}R$, $\frac{3}{2}R$ and by the equation $P + \frac{a}{v^2} (v - b) = \mu RT$ and $P = \frac{a}{v^2} (v - b) = \mu RT$ by $P = 0$ and $P = 0$ are respectively.	clowing quantities is d) 6 d) Triatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ ent of cubical expansion of d) Data is not sufficient e will decrease due to d) $1/V^2$ f temperature and volume
everage kinetic energy Mean free path ree respectively Diatomic, $\frac{7}{2}R$, $\frac{3}{2}R$ ned by the equation $P + \frac{a}{v^2} (v - b) = \mu RT$ $P = v^2 = constant$ $P = v^2 = cons$	d) 6 d) Triatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ ent of cubical expansion of d) Data is not sufficient e will decrease due to d) $1/V^2$ f temperature and volume
Mean free path The respectively Platomic, $\frac{7}{2}R$, $\frac{3}{2}R$ The properties of the equation $P + \frac{a}{v^2} (v - b) = \mu RT$ The $v^{\gamma} = \text{constant}$ The $v^{\gamma} = \text{constant}$ The $v_1 = w_2$ The is V , then the pressure of $v_2 = w_3$ The coefficients of $v_3 = w_3$ The coefficients of $v_4 = w_4$ The coefficients	d) Triatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ ent of cubical expansion of d) Data is not sufficient e will decrease due to d) $1/V^2$ f temperature and volume
Mean free path The respectively Platomic, $\frac{7}{2}R$, $\frac{3}{2}R$ The properties of the equation $P + \frac{a}{v^2} (v - b) = \mu RT$ The $v^{\gamma} = \text{constant}$ The $v^{\gamma} = \text{constant}$ The $v_1 = w_2$ The is V , then the pressure of $v_2 = w_3$ The coefficients of $v_3 = w_3$ The coefficients of $v_4 = w_4$ The coefficients	d) Triatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ ent of cubical expansion of d) Data is not sufficient e will decrease due to d) $1/V^2$ f temperature and volume
The respectively elastomic, $\frac{7}{2}R$, $\frac{3}{2}R$ and by the equation $P + \frac{a}{v^2} (v - b) = \mu RT$ and $P = \frac{a}{v^2}$	d) Triatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ ent of cubical expansion of d) Data is not sufficient e will decrease due to d) $1/V^2$ f temperature and volume
The respectively diatomic, $\frac{7}{2}R$, $\frac{3}{2}R$ and by the equation $P + \frac{a}{v^2} (v - b) = \mu RT$ for $V^{\gamma} = \text{constant}$ for $V_1 = w_2$ at 50°C. The coefficient $V_2 = w_2$ is V_1 , then the pressure $V_2 = w_2$ for $V_1 = w_2$ for $V_2 = w_2$ for $V_3 = w_3$ for $V_4 = w_3$ for $V_5 = w_4$ for $V_6 = w_5$ for $V_7 = w_5$ f	d) Triatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ ent of cubical expansion of d) Data is not sufficient e will decrease due to d) $1/V^2$ f temperature and volume
The respectively diatomic, $\frac{7}{2}R$, $\frac{3}{2}R$ and by the equation $P + \frac{a}{v^2} (v - b) = \mu RT$ for $V^{\gamma} = \text{constant}$ for $V_1 = w_2$ at 50°C. The coefficient $V_2 = w_2$ is V_1 , then the pressure $V_2 = w_2$ for $V_1 = w_2$ for $V_2 = w_2$ for $V_3 = w_3$ for $V_4 = w_3$ for $V_5 = w_4$ for $V_6 = w_5$ for $V_7 = w_5$ f	d) Triatomic, $\frac{7}{2}R$, $\frac{5}{2}R$ ent of cubical expansion of d) Data is not sufficient e will decrease due to d) $1/V^2$ f temperature and volume
Piatomic, $\frac{7}{2}R$, $\frac{3}{2}R$ ned by the equation $P + \frac{a}{v^2} (v - b) = \mu RT$ P(v) = 0 constant $P(v) = 0$ constant	ent of cubical expansion of d) Data is not sufficient e will decrease due to d) $1/V^2$ f temperature and volume
Piatomic, $\frac{7}{2}R$, $\frac{3}{2}R$ ned by the equation $P + \frac{a}{v^2} (v - b) = \mu RT$ P(v) = 0 constant $P(v) = 0$ constant	ent of cubical expansion of d) Data is not sufficient e will decrease due to d) $1/V^2$ f temperature and volume
ned by the equation $P + \frac{a}{v^2} \Big) (v - b) = \mu RT$ $v^{\gamma} = \text{constant}$ $v_2 \text{ at } 50^{\circ}\text{C}. \text{ The coefficient}$ $v_1 = w_2$ $s \text{ is } V, \text{ then the pressure}$ $m/V)^2$ $00K \text{ and volume } 1m^3. \text{ If } v = 0$	ent of cubical expansion of d) Data is not sufficient e will decrease due to d) $1/V^2$ f temperature and volume
$P + \frac{a}{v^2} (v - b) = \mu RT$ $v^{\gamma} = \text{constant}$ $v_1 = w_2$ $v_2 = v_3$ $v_3 = v_4$ $v_4 = v_2$ $v_5 = v_5$ $v_5 = v_6$ $v_7 = v_8$	ent of cubical expansion of d) Data is not sufficient e will decrease due to d) $1/V^2$ f temperature and volume
$v^{\gamma} = \text{constant}$ v_2 at 50°C. The coefficients $v_1 = w_2$ $v_2 = v_3$ $v_4 = v_2$ $v_5 = v_5$ $v_7 = v_2$ $v_7 = v_2$ $v_7 = v_7$ $v_7 = v_7$	ent of cubical expansion of d) Data is not sufficient e will decrease due to d) $1/V^2$ f temperature and volume
w_2 at 50°C. The coefficients $w_1 = w_2$ is V , then the pressure m/V) ² $w_2 = w_2$ $w_3 = w_3$ $w_4 = w_2$ $w_5 = w_4$ $w_5 = w_5$ $w_6 = w_5$ $w_7 = w_2$ $w_7 = w_3$ $w_7 = w_4$ $w_7 = w_5$ $w_7 = w_7$ $w_7 = w_$	d) Data is not sufficient e will decrease due to d) $1/V^2$ f temperature and volume
$w_1 = w_2$ is is V , then the pressure m/V) ² $00K$ and volume $1m^3$. I	d) Data is not sufficient e will decrease due to d) $1/V^2$ f temperature and volume
is is V , then the pressure $(n/V)^2$ 00 K and volume $1m^3$. I	e will decrease due to d) $1/V^2$ f temperature and volume
is is V , then the pressure $(n/V)^2$ 00 K and volume $1m^3$. I	e will decrease due to d) $1/V^2$ f temperature and volume
$(n/V)^2$ $00K$ and volume $1m^3$. I	d) $1/V^2$ f temperature and volume
$00K$ and volume $1m^3$. I	f temperature and volume
$00K$ and volume $1m^3$. I	f temperature and volume
$.5\times10^5N/m^2$	d) $4 \times 10^5 N/m^2$
.5 × 10°N/m	u) 4 × 10°N/m
	1
\sqrt{m}	d) $\frac{1}{\sqrt{m}}$
	VIII
crease from 2/3 K to	4/3 K at constant
000 R	d) 1200 R
$p-c_V$	
v	
<u> </u>	
P	miytura ie
	d) 30°C
by 2.2 g of this gas at t	o-C and 2 atm. pressure
4.174	3) F C 1/4
	d) 5.6 litres
e of the gas be effected	, if the number of
roccuro will romain un	changed
	Proposition of the state of the
	crease from 273 K to $00 R$ $\frac{V}{p} - C_V$ The temperature of the 7° C by 2.2 g of this gas at $\frac{V}{p}$

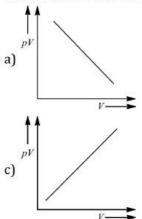
CLICK HERE >>>

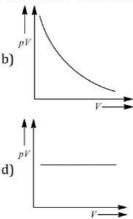
a) $\frac{1}{3}\rho\bar{c}^2$	b) $\frac{1}{3}\rho(c+v)^2$	c) $\frac{1}{3}\rho(\bar{c}-v)^2$	d) $\frac{1}{3}\rho(c^{-2}-v)^2$								
298. At constant volume, temperature is increased. Then											
a) Collision on walls wil	5		per unit time will increase								
c) Collisions will be in s		d) Collisions will not change									
299. One mole of an ideal gas											
pressure. If the same gas is heated at constant volume to raise the temperature by the same 10 K, the heat											
required is											
(Given the gas constant		14 - 15 (15 (15 (15 (15 (15 (15 (15 (15 (15									
a) 198.7 <i>J</i>	b) 29 <i>J</i>	c) 215.3 J	d) 124 <i>J</i>								
300. At what temperature volume of an ideal gas at 0°C becomes triple											
a) 546°C	b) 182°C	c) 819°C	d) 646°C								
301. An air bubble doubles it											
it. If the atmospheric pro	essure is equal to 10 m of w	ater, the height of water in	the reservoir is								
\circ											
a) 10 m	b) 20 m	c) 70 m	d) 80 m								
302. A cylinder of 5 litre cap											
	e resultant air pressure in b		U TEL I SERVE EN RIGIES EL PET ESPUENT MES A PET DE LE CANTE EN LE PUNCHE.								
a) 38.85 cm of Hg	b) 21.85 cm of Hg	c) 10.85 cm of Hg	d) 14.85 cm of Hg								
303. In gases of diatomic mol		,	,								
a) 1.66	b) 1.40	c) 1.33	d) 1.00								
304. Oxygen boils at (-183°C											
a) -297.4°F	b) -253.6°F	c) -342.6°F	d) -225.3°F								
305. The specific heats at cor		A STATE OF THE PROPERTY OF THE									
	work is done in expanding										
0.50	ork is done in expanding th										
	tion increases more at const										
	ion increases more at const										
306. A type kept outside in su											
	b) Increases in volume	c) Both (a) and (b)	d) None of these								
307. 10 moles of an ideal mor	257										
Then the temperature o	Marie Company of the		o a								
a) 15.5°C	b) 15°C	c) 16°C	d) 16.6°C								
308. The number of translation	onal degrees of freedom for	a diatomic gas is									
a) 2	b) 3	c) 5	d) 6								
309. Let A and B the two gases	es and given $\frac{T_B}{H} = 4.\frac{T_B}{H}$; wh	ere T is the temperature a	nd M is molecular mass. If C_A								
and C_B are the $r.m.s.$ sp	eed, then the ratio $\frac{c_A}{c_B}$ will b	e equal to									
a) 2	b) 4	c) 1	d) 0.5								
310. The value of C_V for one is	mole of neon gas is										
a) $\frac{1}{2}R$	b) $\frac{3}{2}R$	c) $\frac{5}{2}R$	d) $\frac{7}{2}R$								
4	4	4	4								
311. Two spheres made of sa ratio of	me substance have diamete	ers in the ratio1: 2. Their t	hermal capacities are in the								
a) 1:2	b) 1:8	c) 1:4	d) 2:1								
312. For an ideal gas	34.		-,								
a) C_p is less than C_V		b) C_p is equal to C_V									
The state of the s											
c) C_p is greater than C	V	$d) C_p = C_V = 0$									

CLICK HERE >>>

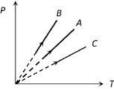
313. From the following P - T graph what inference can be drawn a) $V_2 > V_1$ b) $V_2 < V_1$ c) $V_2 = V_1$ d) None of the above 314. Some gas at 300 K is enclosed in a container. Now, the container is placed on a fast moving train. While the train is in motion, the temperature of the gas a) Rises above 300 K b) Falls below 300 K c) Remains unchanged d) Become unsteady 315. According to Maxwell's law of distribution of velocities of molecules, the most probable velocity is a) Greater than the mean velocity b) Equal to the mean velocity c) Equal to the root mean square velocity d) Less than the root mean square velocity 316. If C_p and C_v denote the specific heats of nitrogen per unit mass at constant pressure and constant volume respectively, then b) $C_p - C_v = R/14$ c) $C_p - C_v = R$ a) $C_p - C_v = R/28$ d) $C_p - C_v = 28R$ 317. A cubical box with porous walls containing an equal number of O_2 and H_2 molecules is placed in a large evacuated chamber. The entire system is maintained at constant temperature T. The ratio of v_{rms} of O_2 molecules to that of the v_{rms} of H_2 molecules, found in the chamber outside the box after a short interval is 318. The graph which represents the variation of mean kinetic energy of molecules with temperature $t^{\circ}C$ is t°C 319. Boyle's law holds for an ideal gas during b) Isothermal changes c) Isochoric changes d) Isotonic changes a) Isobaric changes 320. The kinetic energy of one mole gas at 300K temperature, is E. At 400 K temperature kinetic energy is E'. The value of E'/E is d) 2 a) 1.33 321. Saturated vapour is compressed to half is volume without any change in temperature, then the pressure will be a) Doubled b) Halved c) The same d) Zero 322. The amount of heat required to convert 10 g of ice at -10°C into steam at 100°C is (in calories) b) 5400 c) 7200 d) 7250 323. Inside a cylinder closed at both ends is a movable piston. On one side of the piston is a mass m of a gas, and on the other side a mass 2 m of the same gas. What fraction of the volume of the cylinder will be occupied by the larger mass of the gas when the piston is in equilibrium? The temperature is the same throughout. 324. O_2 gas is filled in a vessel. If pressure is doubled, temperature becomes four times, how many times its density will become a) 2 b) 4 325. The ratio of mean kinetic energy of hydrogen and oxygen at a given temperature is

a) 1:16


b) 1:8


c) 1:4

d) 1:1


326. For matter to exist simultaneously in gas and liquid phases

- a) The temperature must be 0 K
- b) The temperature must be less than 0°C
- c) The temperature must be less than the critical temperature
- d) The temperature must be less than the reduced temperature
- 327. Which one of the following graphs represents the behaviour of an ideal gas?

328. Pressure versus temperature graph of an ideal gas at constant volume V of an ideal gas is shown by the straight line A. Now mass of the gas is doubled and the volume is halved, then the corresponding pressure versus temperature graph will be shown by the line

b) B

d) None of these

329. If a Vander-Waal's gas expands freely, then final temperature is

- a) Less than the initial temperature
- b) Equal to the initial temperature
- c) More than the initial temperature
- d) Less or more than the initial temperature depending on the nature of the gas
- 330. Oxygen and hydrogen are at the same temperature T. The ratio of the mean kinetic energy of oxygen molecules to that of the hydrogen molecules will be

b) 1:1

c) 4:1

d) 1:4

331. At temperature T, the r.m.s. speed of helium molecules is the same as r.m.s. speed of hydrogen molecules at normal temperature and pressure. The value of T is

a) 273°C

b) 546°C

d) 136.5°C

332. The pressure and temperature of an ideal gas in a closed vessel are 720 kPa and 40°C respectively. If $\frac{1}{4}$ th of the gas is released from the vessel and the temperature of the remaining gas is raised to 353°C, the final pressure of the gas is

a) 1440 kPa

b) 1080 kPa

c) 720 kPa

d) 540 kPa

333. A cylinder of fixed capacity (of 44.8 litres) contains 2 moles of helium gas at STP. What is the amount of heat needed to raise the temperature of the gas in the cylinder by 20°C (Use $R = 8.31 \, J \, mol^{-1} K^{-1}$)

b) 831 J

c) 498 J

d) 374 J

334. A thin copper wire of length l increase in length by 1%, when heated from 0°C to 100°C. If a thin copper plate of area $2l \times l$ is heated from 0°C to 100°C, the percentage increase in its area would be

a) 1%

b) 4%

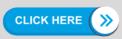
c) 3%

335.	The $r.m.s.$ speed of the m	olecules of a gas at a press	ure 10 ⁵ Pa and temperature	e 0°C is $0.5km$ sec ⁻¹ . If the
		105	o 819°C, the velocity will b	
	a) $1.5 kms^{-1}$	b) 2 kms ⁻¹	c) 5 kms ⁻¹	d) $1 km s^{-1}$
336.	For one gram mol of a gas	, the value of R in the equat	tion PV = RT is nearly	
	a) 2 <i>cal/K</i>	b) 10 <i>cal/K</i>	c) 0.2 cal/K	d) 200 <i>cal/K</i>
337.			ture floats in liquid. For tw	
			me of solid remain submer	ged. What is the coefficient
	of volume expansion of lic	**************************************		Carl St. Ca
	a) $\frac{f_1 - f_2}{f_1 - f_2}$	b) $\frac{f_1 - f_2}{f_1 - f_2}$	c) $\frac{f_1 + f_2}{f_2 t_1 - f_1 t_2}$	d) $\frac{f_1 + f_2}{f_1 + f_2}$
338.			the specific heat constant	
220	a) 1.33	b) 1.44	c) 1.28 re and constant volume for	d) 1.67
339.	a) 1.33	b) 1.44	c) 1.28	d) 1.67
340			e law of equipartition of	27 28 28 28 28 28 28 28 28 28 28 28 28 28
510.	<u> </u>		ic heat (C_V) and gas cons	57 56
	D		500 - 100 100 100 100 100 100 100 100 100	tant (N)
	a) $C_V = \frac{R}{2}$	b) $C_V = R$	c) $C_V = 2R$	d) $C_V = 3R$
341.	A polyatomic gas with n d	egrees of freedom has a mo	ean energy per molecule gi	ven by
	(N is Avogadro's number)	00-1 min	I m	21.77
	a) $\frac{nkT}{N}$	b) $\frac{nkT}{2N}$	c) $\frac{nkT}{2}$	d) $\frac{3kT}{2}$
342	If the mean free path of at	210	4	Z
512.	a) P/4	b) P/2	c) P/8	d) P
343.	NAME		erature will the average l	
	molecules be twice that			
	a) 137°C	b) 127°C	c) 100°C	d) 105°C
344	For a gas $\frac{R}{Gv} = 0.67$. This g		AND THE PROPERTY OF THE PROPER	u) 100 u
		as is made up of molecules		
	a) Diatomic		b) Mixture of diatomic and	d polyatomic molecules
245	c) Monoatomic		d) Polyatomic	
345.	The specific heat of a gas	and C	h) Has a unique value et a	~! t
	a) Has only two values C_Pc) Can have any value bet		b) Has a unique value at ad) Depends upon the mass	Name of the second seco
346	For a certain gas, the ratio		- [100] [20] (10] (10] (20] (20] (10] (10] (10] (10] (10] (10] (10] (1	s of the gas
				5 <i>R</i>
	a) $C_V = \frac{3R}{J}$	b) $C_P = \frac{3R}{I}$	c) $C_P = \frac{5R}{I}$	d) $C_V = \frac{5R}{I}$
		nole of an ideal gas at cons	tant pressure (C_P) and at c	onstant volume (C_V) which
	is correct	-		
	a) C_P of hydrogen gas is $\frac{5}{2}$	R	b) C_V of hydrogen gas is $\frac{7}{2}$	R
	c) H ₂ has very small value	es of C_P and C_V	d) $C_P - C_V = 1.99 \ cal/mo$	$le - K$ for H_2
348.	The value of critical temperature			SEC. 1
	a) $T_c = \frac{8a}{27Rh}$	b) $T_c = \frac{a}{2Rh}$	c) $T_c = \frac{8}{27Rh}$	d) $T_c = \frac{27a}{9Rb}$
	LIND	(Table 1 (Tabl	27°C to 227°C, its <i>r. m. s.</i> sp	OND
0	$metre/s$ to V_s . The V_s is	area gara io inter caro a in oin	-, o to, o, to , timo op	out ontingen iron 100
	a) 516 metre/s	b) 450 metre/s	c) 310 metre/s	d) 746 metre/s
350.	: [1] - [1]		is 27°C. Keeping its volum	
	er un er	27°C, then its pressure wil	The common construction and the contraction of the	
	a) 2 P	b) 3 P	c) 4 P	d) 6 P

CLICK HERE >>>

351. If the degree of freedom			
a) $\frac{2}{f} + 1$	b) $1 - \frac{2}{f}$	c) $1 + \frac{1}{f}$	d) $1 - \frac{1}{f}$
352. A gas at 27°C temperatu	re and 30 atmospheric pre	ssure is allowed to expand	to the atmospheric pressure.
If the volume becomes	10 times its initial volume, t	hen the final temperature b	pecomes
a) 100°C	b) 173°C	c) 273°C	d) −173°C
353. In thermal equilibrium,	the average velocity of gas	molecules is	
	b) Proportional to T^2		d) Zero
354. In kinetic theory of gase	시 14 15일 16 1 시간 및 14 15 1 상품및 시 15 1 전달 및 16 1 1 H = 1 1 1 H = 1		
	ear momentum of the mole		ran or reason ran reasony
a) 2 <i>mV</i>	b) <i>mV</i>	c) $-mV$	d) Zero
355. The translatory kinetic	energy of a gas per g is		
	b) $\frac{3}{2} \frac{RT}{M}$	c) $\frac{3}{2}RT$	3 ,,,,,,,,
a) $\frac{3}{2}\frac{RT}{N}$	$\frac{1}{2} \frac{1}{M}$	$\frac{c}{2}RT$	$\frac{d}{2}NKT$
356. 310 J of heat is required			
	heat required to raise the te	emperature of the gas throu	igh the same range at
constant volume is			W VZVIII
a) 384 J	b) 144 <i>J</i>	c) 276 J	d) 452 <i>J</i>
357. Which of the following s			
,	as are in continuous randon		
	nuously undergo inelastic co		
· 기계투장 및 기업으로 보이 보는 경영을 다듬었다고 보다 전에 보다 보다 보다.	t interact with each other ex	4 No. of the 18 of the 19	
	st the molecules are of sho		
358. At what temperature, th		$_2$ will be the same for H_2 m	olecules at −73°C
a) 127°C	b) 527°C	c) -73°C	d) -173°C
359. The relation between tw			
a) $C_P - C_V = \frac{R}{r}$	b) $C_V - C_P = \frac{R}{I}$	c) $C_P - C_V = J$	d) $C_V - C_P = J$
360. One mole of a monoat			
	xture at constant volume		ic ideal gas. The molar
NOTE AND THE CONTRACT OF THE C			D 4 D
a) (3/2)R	b) (5/2)R	c) 2 R	d) 4 R
361. Two moles of monoator	7	moles of a diatomic gas. Th	e molar specific heat of the
mixture at constant vol			
a) 1.55 R	b) 2.10 <i>R</i>	c) 1.63 R	d) 2.20 R
362. In the relation $n = \frac{PV}{RT}$, r	1 =		
a) Number of molecules	b) Atomic number	c) Mass number	d) Number of moles
363. The root mean square s			
	. The pressure on the hydro		
$10^{-2}kg/m^3$, 1 atmosph	$ere = 1.01 \times 10^5 N/m^2)$		
a) 1.0 <i>atm</i>	b) 1.5 atm	c) 2.0 atm	d) 3.0 atm
364. Pressure of an ideal g	as is increased by keeping	g temperature constant. \	What is the effect on
kinetic energy of mole	ecules?		
a) Increases		b) Decrease	
c) No change		d) Can't be determined	
365. The volume of a gas at 2	20°C is 200 ml. If the tempe	- 150 m	
volume will be	to d is 200 mi. If the temper	rature is reduced to 20 c	at constant pressure, its
a) 172.6 ml	b) 17.26 ml	c) 192.7 ml	d) 19.27 ml
366. At 0°C the density of a f	ixed mass of a gas divided b	y pressure is x . At 100° C, th	ne ratio will be
	b) $\frac{273}{373}x$	c) $\frac{373}{273}x$	d) $\frac{100}{273}x$
a) <i>x</i>	$\frac{373}{373}^{x}$	$\frac{1}{273}^{x}$	$\frac{1}{273}^{x}$

367. A wheel is 80.3 cm in circumference. An iron tyre i											
of linear expansion for iron is 12×10^{-6} °C ⁻¹ , the t											
a) 105°C b) 417°C	c) 312°C	d) 223°C									
368. Which one of the following is not an assumption of											
a) The volume occupied by the molecules of the gas is negligibleb) The force of attraction between the molecules is negligible											
.5	negligible										
c) The collision between the molecules are elasticd) All molecules have same speed											
	100m 1200011 1101 10 12	NAMES OF THE PARTY									
369. The equation of state of a gas is given by $\left(P + \frac{aT^2}{V}\right)$											
isotherms can be represented by $P = AV^m - BV^n$											
a) $m = -c$ and $n = -1$ b) $m = c$ and $n = 1$ 370. The temperature gradient in the earth's crust is 32	c) $m = -c$ and $n = 1$	d) $m = c$ and $n = -1$									
cals ⁻¹ cm ⁻¹ °C ⁻¹ . Considering earth to be a sphere											
about	of radius 6000 km foss of fi	eat by earth everyday is									
a) 10 ³⁰ cal b) 10 ⁴⁰ cal	c) 10 ²⁰ cal	d) 10 ¹⁸ cal									
371. For a gas, the <i>r. m. s.</i> speed at 800 <i>K</i> is	c) to car	u) 10 cu									
a) Four times the value at 200 K	b) Half the value at 200	K									
c) Twice the value at 200 K	d) Same as at 200 K										
372. 8 g of O ₂ , 14 g of N ₂ and 22 g of CO ₂ is mixed in a		at 27°C. The pressure exerted									
by the mixture in terms of atmospheric pressure is											
$(R = 0.082 \mathrm{L} \mathrm{atm} \mathrm{K}^{-1} \mathrm{mol}^{-1})$											
a) 1.4 atm b) 2.5 atm	c) 3.7 atm	d) 8.7 atm									
373. Vapour is injected at a uniform rate in a closed ves	sel which was initially evac	cuated. The pressure in the									
vessel	1) D	-1									
a) Increases continuously	b) Decreases continuou										
c) First increases and then decreases374. At what temperature the molecule of nitrogen	d) First increases and the										
oxygen at 127°C?	will have same this velo	city as the molecule of									
a) 457°C b) 273°C	c) 350°C	d) 77°C									
375. The temperature of an ideal gas is reduced from 9.											
becomes	27 G to 27 G. The 7.111.5. ve	locity of the molecules									
a) Double the initial value	b) Half of the initial valu	ie									
c) Four times the initial value	d) Ten times the initial										
376. At a given temperature the root mean square veloc											
a) 16:1 b) 1:16	c) 4:1	d) 1:4									
377. The temperature of 5 moles of a gas at constan	nt volume is changed fror	n 100°C to 120°C. The									
change in internal energy is 80 J. the total heat	capacity of the gas at co	nstant volume will be in									
JK^{-1} is											
a) 8 b) 4	c) 0.8	d) 0.4									
378. One mole of monoatomic gas and three moles	of diatomic gas are put to	ogether in a container. The									
molar specific heat (in J K^{-1} mol ⁻¹) at constar		- T									
a) 18.7 b) 18.9	c) 19.2	d) None of these									
379. If masses of all molecules of a gas are halved a	555 M 1930 1930 1930 1930 1930 1930 1930 1930	502 #THE PROVENCES ON A STATE CONTROL OF THE STATE OF THE									
and final pressures is	,										
a) 1: 2 b) 2: 1	c) 4:1	d) 1:4									
380. The molar specific heat at constant pressure of an											
pressure to that at constant volume is	0 () -) - 1 - 1 - 1 - 1 - 1 - 1 - 1	1									
a) 5/7 b) 9/7	c) 7/5	d) 8/7									
381. The specific heat of an ideal gas is											


a) Proportional t		T^2 c) Proportional to T^2	
882. Speed of sound in	n a gas is v and $r.m.s.$ velocit	_	he ratio of v to c is
a) $\frac{3}{\nu}$	b) $\frac{\gamma}{3}$	c) $\sqrt{\frac{3}{\gamma}}$	d) $\sqrt{\frac{\gamma}{3}}$
-, γ	3	$\sqrt{\gamma}$	w √3
	eights of O_2 and N_2 are 32 an $g N_2$ in the same bottle at the		te pressure of 1 g O_2 will be the
a) −21°C	b) 13°C	c) 15°C	d) 56.4°C
in temperature			omic and a diatomic gas the rise
a) Monoatomic	b) Diatomic	c) Same for both	d) Can not be predicted
The state of the s	l of gas molecules is given by		_
a) 2.5 $\frac{RT}{M}$	b) 1.73 $\sqrt{\frac{RT}{M}}$	c) $2.5\sqrt{\frac{M}{RT}}$	d) 1.73 $\sqrt{\frac{M}{RT}}$
		100	temperature T, the mass of each
on not and a contract of the contract for the contract of the	ne expression for the density	하다 이 것을 보는 하다 하 다 이 하다는 것들은 하다는 것을 말했다. 다리 하다 하는 것을 만든 것이다는 것은 것이다. 하다 나라 나라 나라 나를 들었다. 하다 나라다	
a) mkT	b) <i>P/kT</i>	c) P/kTV	d) Pm/kT
0	n this mixture at temperature		itrogen molecules. Specific heat te that the of γ (ratio specific
a) 3/2	b) 4/3	c) 5/3	d) 7/5
a) 3/2	b) 4/3	c) 5/3	d) 7/5
a) 3/2	b) 4/3	c) 5/3	d) 7/5
a) 3/2	b) 4/3	c) 5/3	d) 7/5
a) 3/2	b) 4/3	c) 5/3	d) 7/5
a) 3/2	b) 4/3	c) 5/3	d) 7/5
a) 3/2	b) 4/3	c) 5/3	d) 7/5
a) 3/2	b) 4/3	c) 5/3	d) 7/5

KINETIC THEORY

						: ANS	WI	ER K	EY:						
1)	d	2)	a	3)	c	4)	b	161)	c	162)	d	163)	b	164)	
5)	a	6)	c	7)	b	8)	c	165)	c	166)	a	167)	d	168)	
9)	C	10)	b	11)	c	12)	a	169)	C	170)	c	171)	a	172)	
13)	C	14)	b	15)	a	16)	c	173)	a	174)	b	175)	a	176)	
17)	a	18)	a	19)	a	20)	d	177)	a	178)	c	179)	b	180)	
21)	C	22)	d	23)	d	24)	c	181)	c	182)	a	183)	a	184)	
25)	d	26)	c	27)	d	28)	c	185)	a	186)	b	187)	c	188)	
29)	d	30)	b	31)	a	32)	b	189)	d	190)	d	191)	C	192)	
33)	c	34)	b	35)	a	36)	a	193)	b	194)	b	195)	d	196)	
37)	C	38)	c	39)	d	40)	c	197)	c	198)	d	199)	C	200)	
41)	d	42)	a	43)	b	44)	c	201)	d	202)	b	203)	b	204)	
45)	a	46)	a	47)	c	48)	c	205)	c	206)	C	207)	c	208)	
49)	d	50)	d	51)	b	52)	d	209)	a	210)	C	211)	a	212)	
53)	C	54)	C	55)	d	56)	a	213)	C	214)	d	215)	b	216)	
57)	C	58)	d	59)	b	60)	d	217)	C	218)	c	219)	c	220)	
61)	a	62)	b	63)	b	64)	a	221)	a	222)	C	223)	b	224)	
65)	a	66)	a	67)	C	68)	d	225)	C	226)	a	227)	b	228)	
69)	c	70)	c	71)	a	72)	b	229)	b	230)	a	231)	a	232)	
73)	a	74)	d	75)	c	76)	c	233)	c	234)	c	235)	a	236)	
77)	d	78)	d	79)	c	80)	d	237)	d	238)	c	239)	a	240)	
81)	d	82)	c	83)	c	84)	a	241)	c	242)	a	243)	d	244)	
85)	a	86)	a	87)	b	88)	c	245)	b	246)	d	247)	c	248)	
89)	a	90)	c	91)	b	92)	c	249)	a	250)	C	251)	d	252)	
93)	C	94)	a	95)	C	96)	ь	253)	d	254)	a	255)	c	256)	
97)	a	98)	c	99)	a	100)	b	257)	d	258)	a	259)	C	260)	
101)	d	102)	C	103)	C	104)	a	261)	b	262)	d	263)	a	264)	
105)	a	106)	С	107)	d	108)	a	265)	a	266)	c	267)	b	268)	
109)	c	110)	b	111)	b	112)	d	269)	c	270)	c	271)	b	272)	
113)	b	114)	d	115)	b	116)	a	273)	c	274)	d	275)	b	276)	
117)	d	118)	a	119)	d	120)	d	277)	d	278)	b	279)	d	280)	
121)	a	122)	b	123)	d	124)	d	281)	a	282)	c	283)	b	284)	
125)	c	126)	a	127)	d	128)	b	285)	c	286)	b	287)	a	288)	
129)	c	130)	b	131)	d	132)	ь	289)	a	290)	a	291)	d	292)	
133)	a	134)	c	135)	a	136)	b	293)	b	294)	a	295)	a	296)	
137)	d	138)	b	139)	d	140)	- 1	297)	a	298)	b	299)	d	300)	
141)	c	142)	а	143)	a	144)		301)	c	302)	c	303)	b	304)	
145)	d	146)	b	147)	b	148)	1	305)	a	306)	a	307)	d	308)	
149)	d	150)	C	151)	a	152)	- 92	309)	a	310)	b	311)	b	312)	
153)	а	154)	d	155)	b	156)		313)	a	314)	a	315)	d	316)	
157)	c	158)	d	159)	b	160)		317)	b	318)	c	319)	b	320)	

321)	c	322)	d	323)	a	324)	d	357)	b	358)	c	359)	a	360)	c
325)	d	326)	C	327)	d	328)	b	361)	b	362)	d	363)	d	364)	c
329)	a	330)	b	331)	a	332)	b	365)	a	366)	b	367)	c	368)	d
333)	c	334)	d	335)	d	336)	a	369)	a	370)	d	371)	c	372)	c
337)	a	338)	c	339)	a	340)	d	373)	c	374)	d	375)	b	376)	d
341)	c	342)	b	343)	a	344)	C	377)	b	378)	a	379)	b	380)	C
345)	C	346)	b	347)	d	348)	a	381)	d	382)	d	383)	a	384)	a
349)	a	350)	С	351)	a	352)	d	385)	b	386)	d	387)	C		
353)	a	354)	a	355)	b	356)	b								

KINETIC THEORY

: HINTS AND SOLUTIONS :

1 (d)

$$v_{rms} = \sqrt{\frac{v_1^2 + v_2^2 + v_3^2 + v_4^2 + v_5^2}{5}} = 4.24$$

2 (a)

Rate of cooling proportional to $(T^4 - T_0^4)$, as per Stefan's Law.

$$\frac{R'}{R} = \frac{(900)^4 - (300)^4}{(600)^4 - (300)^4} \\
= \frac{9^4 - 3^4}{6^4 - 3^4} = \frac{3^4 (3^4 - 1)}{3^4 (2^4 - 1)} \\
= \frac{80}{15} = \frac{16}{3} \\
R' = \frac{16}{3} R$$

3 (c)

The temperature rises by the same amount in the two cases and the internal energy of an ideal gas depends only on it's temperature

Hence
$$\frac{U_1}{U_2} = \frac{1}{1}$$

4 (b)

$$\frac{E_2}{E_1} = \left(\frac{T_2}{T_1}\right)^4 \\
= \left(\frac{273 + 84}{273 + 27}\right)^4 = \left(\frac{357}{300}\right)^4 = 2.0$$

5 (a)

Kinetic energy for m g gas $E = \frac{f}{2} mrT$

If only translational degree of freedom is considered

Then
$$f = 3 \Rightarrow E_{\text{Trans}} = \frac{3}{2}mrT = \frac{3}{2}m\left(\frac{R}{M}\right)T$$

= $\frac{3}{2} \times 20 \times \frac{8.3}{32} \times (273 + 47) = 2490J$

6 (c

The number of moles of the system remains same, 14

$$\begin{split} \frac{P_1V_1}{RT_1} + \frac{P_2V_2}{RT_2} &= \frac{P(V_1 + V_2)}{RT} \Rightarrow T \\ &= \frac{P(V_1 + V_2)T_1T_2}{(P_1V_1T_2 + P_2V_2T_1)} \end{split}$$

According to Boyle's law

$$P_1V_1 + P_2V_2 = P(V_1 + V_2) :: T$$

$$= \frac{(P_1V_1 + P_2V_2)T_1T_2}{(P_1V_1T_2 + P_2V_2T_1)}$$

7 **(b**)

Saturated water vapour do not obey gas laws

8 (c

$$v_{rms} = \sqrt{\frac{3RT}{M}} \Rightarrow T \propto M \quad [\because v_{rms}, R \rightarrow \text{constant}]$$

$$\Rightarrow \frac{T_{O_2}}{T_{N_2}} = \frac{M_{O_2}}{M_{N_2}} \Rightarrow \frac{T_{O_2}}{(273 + 0)} = \frac{32}{28} \Rightarrow T_{O_2} = 312K$$

$$= 39^{\circ}\text{C}$$

9 (c

Boyle's and Charle's law follow kinetic theory of gases

10 **(b)**

$$F = \frac{3}{2}kT \Rightarrow E \propto T$$

12 (a)

In elastic collision kinetic energy is conserved

13 (c)

From the Mayer's formula

$$C_p - C_V = R$$

...(i)

and
$$\gamma = \frac{c_p}{c_V}$$

 $\Rightarrow \qquad \gamma C_V = C_p$

...(ii)

Substituting Eq. (ii) in Eq. (i) we get

$$\Rightarrow \qquad \gamma C_V - C_V = R$$

$$C_V (\gamma - 1) = R$$

$$C_V = \frac{R}{\gamma - 1}$$

14 **(b)**

From Andrews curve

15 (a)

The rms velocity of an ideal gas is

$$v_{rms} = \sqrt{\frac{3RT}{M}}$$

Where *T* is the absolute temperature and *M* is the molar mass of an ideal gas

Since M remains the same

16 (c)

At constant temperature;
$$PV = \text{constant}$$

 $\Rightarrow P \times \left(\frac{m}{D}\right) = \text{constant}$
 $\Rightarrow \frac{P}{D} = \text{constant} = K. [D = \text{Density}]$

17 (a)

$$v_{rms} = \sqrt{\frac{3p}{
ho}} \Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{
ho_2}{
ho_1}} = \sqrt{\frac{16}{1}} = \frac{4}{1}$$

18 (a)

The gases carbon monoxide (CO) and nitrogen (N₂) are diatomic, so both have equal kinetic energy $\frac{5}{2}kT$, ie. $E_1 = E_2$.

19 (a)

From ideal gas equation, we have

$$pV = nRT$$

$$\therefore \qquad n = \frac{pV}{RT}$$

Given, p = 22.4 atm pressure = $22.4 \times 1.01 \times 10^5 \text{ Nm}^{-2}$, $V = 2L = 2 \times 10^{-3} \text{ m}^3$,

$$R = 8.31 \,\mathrm{J} \,\mathrm{mol}^{-1} - \mathrm{K}^{-1}$$

T = 273 K

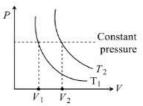
$$n = \frac{22.4 \times 1.01 \times 10^5 \times 2 \times 10^{-3}}{8.31 \times 273}$$

 $n=1.99\approx 2$

Since,
$$n = \frac{\text{Mass}}{\text{Atomic weight}}$$

We have,

 $\mathrm{mass} = n \times \mathrm{atomic} \ \mathrm{weight} = 2 \times 14 = 28 \ \mathrm{g}$


20 **(d**)

Average kinetic energy $E = \frac{3}{2}kT$ $\Rightarrow E \propto T$

Thus, average kinetic energy of a gas molecule is directly proportional to the absolute temperature of gas.

21 **(c)**

For a given pressure, volume will be more if temperature is more [Charle's law]

From the graph it is clear that $V_2 > V_1 \Rightarrow T_2 > T_1$

22 **(d**)

$$C_{\text{rms}} = \sqrt{\frac{3RT}{M}}$$

$$Or M = \frac{3RT}{c_{\text{rms}}^2} = \frac{3 \times 8.31 \times 300}{(1920)^2}$$

$$= 2 \times 10^{-3} \text{ kg} = 2\text{ g}$$

Since, M = 2 for the hydrogen molecule. Hence, the gas is hydrogen.

23 (d)

$$v_{rms} = \sqrt{\frac{^{3P}}{\rho}} = P \propto \rho \ [v_{rms} \ {\rm is \ constant \ for \ fixed \ temperature}]$$

24 (c)

According to Boyle's law

$$p_1V_1=p_2V_2$$

As the pressure is decreased by 20%, so

$$p_2 = \frac{80}{100} p_1$$

$$p_1 V_1 = \frac{80}{100} p_1 V_2$$

$$V_1 = \frac{80}{100} V_2$$

Percentage increase in volume

$$= \frac{v_2 - v_1}{v_1} \times 100$$
$$= \frac{100 - 80}{80} \times 100 = 25\%$$

25 (d)

Root mean square velocity,

$$c = \sqrt{\frac{3pV}{M}} = \sqrt{\frac{3RT}{M}}$$

$$c_1 = \sqrt{\frac{3R(T/2)}{2M}} = \frac{1}{2}\sqrt{\frac{3RT}{M}}$$

$$= \frac{c}{2} = \frac{300}{2} = 150 \text{ ms}^{-1}$$

26 (c)

At TK, pressure of gas (P) in the jar

= Total pressure – saturated vapour pressure $\Rightarrow P = (830 - 30) = 800mm \text{ of } Hg$ New temperature $T' = \left(T - \frac{T}{100}\right) = \frac{99T}{100}$ Using Charle's law $\frac{P}{T} = \frac{P'}{T'} \Rightarrow P' = \frac{PT'}{T}$ = $\frac{800 \times 99T}{100T} = 792mm \text{ of } Hg$

Saturated vapour pressure at $T' = 25 mm \ of \ Hg$ \therefore Total pressure in the jar

= Actual pressure of gas + Saturated vapour

$$= 792 + 25 = 817 \, mm \text{ of } Hg$$

28 (c)

$$\mu_1 = \frac{PV}{RT}, \mu_2 = \frac{PV}{RT}$$

$$P' = \frac{(\mu_1 + \mu_2)RT}{V} = \frac{2PV}{RT} \times \frac{RT}{V} = 2P$$

Average kinetic energy $E = \frac{f}{2}kT$

Sinec *f* and *T* are same for both the gases so they will have equal energies also

30 (b)

$$\begin{aligned} V_{rms} &= \sqrt{\frac{3RT}{M}} \Rightarrow \frac{(V_{rms})_{O_2}}{(V_{rms})_{H_2}} = \sqrt{\frac{T_{O_2}}{T_{H_2}}} \times \frac{M_{H_2}}{M_{O_2}} \\ &\Rightarrow \frac{(V_{rms})_{O_2}}{(V_{rms})_{H_2}} = \sqrt{\frac{900}{300}} \times \frac{2}{32} = \frac{\sqrt{3}}{4} \\ &\Rightarrow (v_{rms})_{O_2} = 836m/s \end{aligned}$$

31 (a)

As degree of freedom is defined as the number of independent variables required to define body's motion completely. Here f = 2 (1 Translational + 1 Rotational)

32 (b)

$$\frac{E_1}{E_2} = \frac{A_1}{A_2} \cdot \left(\frac{T_1}{T_2}\right)^4 = \frac{4\pi r_1^2}{4\pi r_2^2} \times 1 = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$$

$$V_{rms} = \sqrt{\frac{3P}{\rho}} \text{ or } P = \frac{\rho V_{rms}^2}{3}$$
$$= \frac{8.99 \times 10^{-2} \times 1840 \times 1840}{3} = 1.01 \times 10^5 N/m^2$$

$$v_{\rm rms} = \sqrt{\frac{3RT}{M}}$$
 or $v_{\rm rms} \propto \sqrt{T}$

 $v_{\rm rms}$ is to reduce two times, ie, the temperature of the gas will have to reduce force times or

$$\frac{T'}{T} = \frac{1}{4}$$

During adiabatic process,

$$TV^{\gamma-1} = T'V'^{\gamma-1}$$

or
$$\frac{v'}{v} = \left(\frac{T}{T'}\right)^{\frac{1}{\gamma-1}}$$

= $(4)^{\frac{1}{1.5-1}} = 4^2 = 16$

35 **(a)**
$$(\Delta Q)_V = \mu C_V \Delta T \Rightarrow (\Delta Q)_V = 1 \times C_V \times 1 = C_V$$

For monoatomic gas $C_V = \frac{3}{2}R$

$$\therefore (\Delta Q)_V = \frac{3}{2}R$$

36 (a)

Root mean square velocity

$$v_{rms} \propto \frac{1}{\sqrt{M}}$$
So
$$\frac{(v_{rms})_{O_2}}{(v_{rms})_{H_2}} = \sqrt{\frac{M_{H_2}}{M_{O_2}}}$$

$$= \sqrt{\frac{2}{32}} = \frac{1}{4}$$

37 (c)

At constant pressure $V \propto T \Rightarrow \frac{\Delta V}{V} = \frac{\Delta T}{T}$

Hence ratio of increase in volume per degree rise in kelvin temperature to it's original volume = $\frac{(\Delta V/\Delta T)}{V} = \frac{1}{T}$

38 (c)

$$\rho = \frac{PM}{RT}$$

Density ρ remains constant when P/T or volume remains constant.

In graph (i) Pressure is increasing at constant temperature hence volume is decreasing so density is increasing. Graphs (ii) and (iii) volume is increasing hence, density is decreasing. Note that volume would had been constant in case the straight line the graph (iii) had passed through origin

(d)

According to Newton's law

$$\begin{aligned} &\frac{\theta_1 - \theta_2}{t} = K \left[\frac{\theta_1 + \theta_2}{2} - \theta_0 \right] \\ &\therefore \frac{60 - 50}{10} = K \left[\frac{60 + 50}{2} - 25 \right] \dots (i) \end{aligned}$$

Let
$$\theta$$
 be the temperature after another 10 min

$$\therefore \ \frac{50-\theta}{10} = K \left[\frac{\theta+50}{2} - 25 \right] \quad(ii)$$

Dividing Eq.(i) by Eq. (ii), we get

$$\frac{10}{50-\theta} = \frac{30 \times 2}{\theta} \therefore \theta = 42.85^{\circ}\text{C}$$

$$\frac{\left(\frac{\Delta Q}{\Delta t}\right)_{\text{inner}} + \left(\frac{\Delta Q}{\Delta t}\right)_{\text{outer}} = \left(\frac{\Delta Q}{\Delta t}\right)_{\text{total}}}{l} \\
\frac{K_1 \pi r^2 (T_2 - T_1)}{l} + \frac{K_2 \pi [(2r)^2 - r^2](T_2 - T_1)}{l} \\
= \frac{K \pi (2r)^2 (T_2 - T_1)}{l} \\
\text{or } (K_1 + 3K_2) \frac{\pi r^2 (T_2 - T_1)}{l} = \frac{K \pi 4 r^2 (T_2 - T_1)}{l} \\
\therefore K = \frac{K_1 + 3K_2}{4}$$

$$\gamma_{\text{mixture}} = \frac{\frac{\mu_1 \gamma_1}{\gamma_1 - 1} + \frac{\mu_2 \gamma_2}{\gamma_2 - 1}}{\frac{\mu_1}{\gamma_1 - 1} + \frac{\mu_2}{\gamma_2 - 1}}$$

 $\mu_1 = \text{moles of helium} = \frac{16}{4} = 4$

$$\mu_2$$
 = moles of oxygen = $\frac{16}{32} = \frac{1}{2}$

$$\Rightarrow \gamma_{\text{mix}} = \frac{\frac{4 \times 5/3}{\frac{5}{3} - 1} + \frac{1/2 \times 7/5}{\frac{7}{5} - 1}}{\frac{4}{\frac{5}{2} - 1} + \frac{1/2}{\frac{7}{2} - 1}} = 1.62$$

42 (a)

Mean free path,
$$\lambda = \frac{1}{\sqrt{2}\pi d^2 n}$$

Where, n = Number of molecules per unit volume d = Diameter of the molecules

43 **(b)**

Speed of sound in gases in given by

$$v_{\text{sound}} = \sqrt{\frac{\gamma P}{\rho}} \Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{\rho_2}{\rho_1}} = \sqrt{\frac{d_2}{d_1}}$$

44 (c)

$$n_1 C_{v1} \Delta T_1 = n_2 C_{v2} \Delta T_2$$

$$\Rightarrow n_1 \times \frac{3}{2} R \times 10 = n_2 \times \frac{5}{2} R \times 6 \Rightarrow \frac{n_1}{n_2} = 1$$

45 (a)

We treat water like a solid. For each atom average energy is $3k_BT$. Water molecule has three atoms, two hydrogen and one oxygen. The total energy of one mole of water is

$$U = 3 \times 3k_B T \times N_A = 9RT \quad \left[\because k_B = \frac{R}{N_A} \right]$$

: Heat capacity per mole of water is

$$C = \frac{\Delta Q}{\Delta T} = \frac{\Delta U}{\Delta T} = 9R$$

46 (a)

K.E. is function of temperature. So $\frac{E_{H_2}}{E_{O_2}} = \frac{1}{1}$

47 (c)

According to kinetic theory of gases the temperature of a gas is a measure of the kinetic energies of the molecules of the gas.

48 (c)

At constant volume

$$\frac{P_1}{T_1} = \frac{P_2}{T_2} \Rightarrow T_2 = \left(\frac{P_2}{P_1}\right) T_1$$

$$\Rightarrow T_2 = \left(\frac{3P}{P}\right) \times (273 + 35) = 3 \times 308 = 924K$$

$$= 651^{\circ}C$$

$$\frac{3}{2}kT = 1 \text{ eV} \Rightarrow T = \frac{2}{3} \frac{\text{eV}}{k} = \frac{\frac{2}{3} \times 1.6 \times 10^{-19}}{1.38 \times 10^{-23}}$$
$$= 7.7 \times 10^{3} \text{K}$$

51 **(b)**

Vander Waal's gas equation for μ mole of real gas

$$\left(P + \frac{\mu^2 a}{V^2}\right)(V - \mu b) = \mu RT$$

$$P = \left(\frac{\mu RT}{V - \mu b} - \frac{\mu^2 a}{V^2}\right)$$

Given equation

$$P = \left(\frac{RT}{2V - b} = \frac{a}{4b^2}\right)$$

On comparing the given equation with this standard equation, we get

$$\mu = \frac{1}{2}$$

Hence, $\mu = \frac{m}{M}$

$$\Rightarrow$$
 mass of gas, $m = \mu M = \frac{1}{2} \times 44 = 22g$

52 (d)

$$C_P = \left(\frac{f}{2} + 1\right)R = \left(\frac{5}{2} + 1\right)R = \frac{7}{2}R$$

$$\frac{R}{C_P} = \frac{R}{7/2R} = \frac{2}{7} \quad \left[\because C_P = \frac{7}{2}R \right]$$

54 (c

As temperature decreases to half and volume made twice, hence pressure becomes $\frac{1}{4}$ times

55 (d)

$$p = p_1 + p_2 + p_3$$

$$= \left(\frac{nRT}{V}\right)_{O_2} + \left(\frac{nRT}{V}\right)_{N_2} + \left(\frac{nRT}{V}\right)_{CO_2}$$

$$= \left(n_{O_2} + n_{N_2} + n_{CO_2}\right) \frac{RT}{V}$$

$$= \frac{(0.25 + 0.5 + 0.5)(8.31) \times 300}{4 \times 10^{-3}}$$

$$= 7.79 \times 10^5 \text{ Nm}^{-2}$$

56 (a

$$PV = \mu RT = \frac{m}{M}RT \Rightarrow V = \frac{mRT}{MP}$$
$$= \frac{2 \times 10^{-3} \times 8.3 \times 300}{32 \times 10^{-3} \times 10^{5}} = 1.53 \times 10^{-3}m^{3}$$
$$= 1.53 \text{ litre}$$

57 **(c)**

According to Boyle's law

 $(P_1V_1)_{\text{At top of the lake}} = (P_2V_2)_{\text{At the bottom of the lake}}$

$$\Rightarrow P_1 V_1 = (P_1 + h) V_2 \Rightarrow 10 \times \frac{4}{3} \pi \left(\frac{5r}{4}\right)^3$$

$$\Rightarrow (10+h) \times \frac{4}{3}\pi r^3 \Rightarrow h = \frac{610}{64} = 9.53m$$

We have
$$v_{\rm rms}=\sqrt{\frac{3RT}{M}};~{\rm at}~T=T_0({\rm NTP})$$

$$v_{\rm rms}=\sqrt{\frac{3RT_0}{M}}$$

But at temperature T,

$$v_{\rm rms} = 2 \times \sqrt{\frac{3RT_0}{M}}$$

$$\Rightarrow \qquad \sqrt{\frac{3RT}{M}} = 2\sqrt{\frac{3RT_0}{M}}$$

$$\Rightarrow \qquad \sqrt{T} = \sqrt{4T_0}$$
or
$$T = 4T_0$$

$$T = 4 \times 273 \text{K} = 1092 \text{K}$$

$$\therefore \qquad T = 819^{\circ}\text{C}$$

59 (b) $E = \frac{f}{2}RT$; f = 5 for diatomis gas $\Rightarrow E = \frac{5}{2}RT$

Average kinetic energy

Average kinetic energy
$$E = \frac{3}{2}kT \Rightarrow \frac{E_1}{E_2} = \frac{T_1}{T_2} = \frac{(273 - 23)}{(273 + 227)} = \frac{250}{500} = \frac{1}{2}$$

$$\Rightarrow E_2 = 2E_1 = 2 \times 5 \times 10^{-14} = 10 \times 10^{-14} erg$$

61 (a)

A monoatomic gas molecule has only three translational degrees of freedom

62 (b)

$$\gamma_{\text{mix}} = \frac{\frac{\mu_1 \gamma_1}{\gamma_1 - 1} + \frac{\mu_2 \gamma_2}{\gamma_2 - 1}}{\frac{\mu_1}{\gamma_1 - 1} + \frac{\mu_2}{\gamma_2 - 1}} = \frac{\frac{3 \times 1.3}{(1.3 - 1)} + \frac{2 \times 1.4}{(1.4 - 1)}}{\frac{3}{(1.3 - 1)} + \frac{2}{(1.4 - 1)}} = 1.33$$

63 **(b)**

At critical temperature the horizontal portion in P-V curve almost vanishes as at temperature T_2 . Hence the correct answer will be (b)

64 (a)

$$v_{rms} \propto \frac{1}{\sqrt{M}} \Rightarrow \frac{(v_{rms})_{H_2}}{(v_{rms})_{He}} = \sqrt{\frac{M_{He}}{M_{H_2}}} = \sqrt{\frac{4}{2}} = \frac{\sqrt{2}}{1}$$

65 (a)

When electric spark is passed, hydrogen reads with oxygen to form water (H_2O) . Each gram of hydrogen reacts with eight grams of oxygen. Thus 96 gm of oxygen will be totally consumed together with 12 gm of hydrogen. The gas left in the vessel will be 2 gm of hydrogen i.e.

Number of moles $\mu = \frac{2}{2} = 1$

Using
$$PV = \mu RT \Rightarrow P \propto \mu \Rightarrow \frac{P_2}{P_1} = \frac{\mu_2}{\mu_1}$$

 $(\mu_1 = \text{Initial number of moles} = 7 + 3 = 10 \text{ and}$ μ_2 = Final number of moles = 1)

$$\Rightarrow \frac{P_2}{1} = \frac{1}{10} \Rightarrow P_2 = 0.1 \ atm$$

$$v_{rms} = \sqrt{\frac{3RT}{M}} \Rightarrow \frac{v_2}{v_1} = \sqrt{\frac{T_2}{T_1}} = \sqrt{\frac{(273 + 90)}{(273 + 27)}} = 1.1$$

% increase = $\left(\frac{v_2}{v_1} - 1\right) \times 100 = 0.1 \times 100 = 10\%$

67 (c)

Ideal gas equation is given by

$$pV = nRT$$

...(i)

For oxygen, p=1 atm, V=1 L, $n=n_{0}$

Therefore, Eq. (i) becomes

$$\therefore 1 \times 1 = n_{0,2}RT$$

$$\Rightarrow \qquad n_{O_2} = \frac{1}{RT}$$

For nitrogen p = 0.5 atm, V = 2 L, $n = n_N$

$$\therefore \qquad 0.5 \times 2 = n_{N_2} RT$$

$$\Rightarrow \qquad n_{N_2} = \frac{1}{RT}$$

For mixture of gas

$$p_{\min}V_{\min} = n_{\min}RT$$

Here, $n_{\text{mix}} = n_{02} + n_{N2}$

$$\therefore \frac{p_{\text{mix}}V_{\text{mix}}}{RT} = \frac{1}{RT} + \frac{1}{RT}$$

$$\Rightarrow p_{\text{mix}}V_{\text{mix}} = 2 \qquad (V_{\text{mix}} = 2)$$

1)

(d)

Let T_0 be the initial temperature of the black body $\therefore \ \lambda_0 T_0 = b \ (\text{Wien's law})$

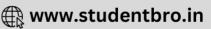
Power radiated, $P_0 = CT_0^4$, where, C is constant. If T is new temperature of black body, then

$$\frac{3\lambda_0}{4}T = b = \lambda_0 T_0 \text{ or } T = \frac{4}{3} T_0$$

Power radiated, $P = CT^4 = CT_0^4 \left(\frac{4}{3}\right)^4$

$$P = P_0 \times \frac{256}{81}$$
 or $\frac{P}{P_0} = \frac{256}{81}$

69


$$PV = \frac{m}{M}RT \Rightarrow V \propto mT \Rightarrow \frac{V_1}{V_2} = \frac{m_1}{m_2} \cdot \frac{T_1}{T_2}$$
$$= \frac{2V}{V} = \frac{m}{m_2} \times \frac{100}{200} \Rightarrow m_2 = \frac{m}{4}$$

70

At constant temperature $PV = \text{constant} \Rightarrow P \propto \frac{1}{V}$

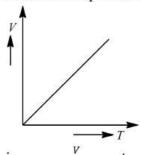
71 (a)

 $v_{rms} \propto \frac{1}{\sqrt{M}} \Rightarrow (v_{rms})_1 < (v_{rms})_2 < (v_{rms})_3$ also in mixture temperature of each gas will be same, hence kinetic energy also remains same

72 **(b)**

$$\frac{E_1}{E_2} = \frac{T_1}{T_2} = \frac{300}{450} = \frac{2}{3}$$

$$PV = \mu RT = \frac{m}{M}RT \Rightarrow P = \frac{d}{M}RT \text{ [Density } d = \frac{m}{V}]$$


$$\Rightarrow \frac{P}{dT} = \text{constant or } \frac{P_1}{d_1 T_1} = \frac{P_2}{d_2 T_2}$$

74 **(d)**

$$P \propto T \Rightarrow \frac{P_2}{P_1} = \frac{T_2}{T_1} = \frac{(273 + 100)}{(273 + 0)} = \frac{373}{273}$$

$$\Rightarrow P_2 = \frac{760 \times 373}{273} = 1038mm$$

75 **(c)** Since temperature is constant, so v_{rms} remains same

ie., $\frac{V}{T}$ =constant

This is another form of Charles' law. Hence, variation of volume with temperature is as shown.

Hence, correct graph will be (C).

- 77 (d)
 Argon is a monoatomic gas so it has only translational energy
- 79 **(c)**According to the Dalton's law of partial pressure, the total pressure will be $P_1 + P_2 + P_3$
- Kinetic energy \propto Temperature $\Rightarrow \frac{E_1}{E_2} = \frac{T_1}{T_2} \Rightarrow \frac{E_1}{E_2} = \frac{(273 + 27)}{(273 + 927)} = \frac{300}{1200} = \frac{1}{4}$ $\Rightarrow E_2 = 4E_1$ 81 (d)

$$\frac{V_{rms_{He}}}{V_{rms_{Ar}}} = \frac{\sqrt{\frac{3RT}{m_{He}}}}{\sqrt{\frac{3RT}{m_{Ar}}}} = \sqrt{\frac{m_{Ar}}{m_{He}}} = \sqrt{\frac{40}{4}} = \sqrt{10} \approx 3.16$$

- 82 (c)
 We know that $C_P C_V = \frac{R}{J}$ $\Rightarrow J = \frac{R}{C_P C_V}$ $C_P C_V = 1.98 \frac{cal}{g mol K}$ $R = 8.32 \frac{J}{g mol K}$ $\therefore J = \frac{8.32}{1.98} = 4.20J/cal$ 83 (c)
- S.I. unit of R is J/mol K84 (a) According to Boyle's law PV = constant

85 (a) $v_{\rm rms} \propto \sqrt{\frac{3RT}{M}}$ $\Rightarrow T \propto v_{\rm rms}^2$

$$\Rightarrow T \propto v_{\text{rms}}^{2}$$

$$\Rightarrow \frac{T_{2}}{T_{1}} = \left[\frac{v_{2}}{v_{1}}\right]^{2} = \frac{1}{4} \Rightarrow T_{2} = \frac{T_{1}}{4}$$

$$= \frac{273 + 327}{4}$$

$$= 150 \text{ K} = -123^{\circ}\text{C}$$

The total pressure exerted by a mixture of non-reacting gases occupying a vessel is equal to the sum of the individual pressure which each gas exert if it alone occupied the same volume at a given temperature.

For two gases,

$$p = p_1 + p_2 = p + p = 2p$$

- 87 **(b)**According to ideal gas equation PV = nRT $PV = \frac{m}{M}RT, P = \frac{\rho}{M}RT \text{ or } \frac{\rho}{P} = \frac{M}{RT} \text{ or } \frac{\rho}{P} \propto \frac{1}{T}$ Here, $\frac{\rho}{P}$ represent the slope of graph
 Hence $T_2 > T_1$
 - 188 (c) $PV = \mu RT = \frac{m}{M}RT \Rightarrow P \propto mT$ $\Rightarrow \frac{P_2}{P_1} = \frac{m_2}{m_1} \frac{T_2}{T_1} = \frac{1}{2} \times \frac{(273 + 27 + 50)}{(273 + 27)} = \frac{7}{12}$ $\Rightarrow P_2 = \frac{7}{12} P_1 = \frac{7}{12} \times 20 = 11.67 atm. \approx 11.7 atm$ 189 (a)

Since $c_{rms} << V_e$, hence molecules do not escape out

91 (b)

In case of given graph, V and T are related as V = aT - b, where a and b are constants.

From ideal gas equation, $PV = \mu RT$

We find
$$P = \frac{\mu RT}{aT - b} = \frac{\mu R}{a - b/T}$$

Sinec $T_2 > T_1$, therefore $P_2 < P_1$

92 (c)

Gas equation for N molecules PV = NkT

$$\Rightarrow N = \frac{PV}{kT}$$

$$= \frac{1.2 \times 10^{-10} \times 13.6 \times 10^{3} \times 10 \times 10^{-4}}{1.38 \times 10^{-23} \times 300}$$

$$= 3.86 \times 10^{11}$$

93 **(c)**

 $E \propto T$

94 (a)

$$v_{rms} \propto \sqrt{T}, \frac{v_2}{v_1} = \sqrt{\frac{T_2}{T_1}} \Rightarrow v_2 = \sqrt{\frac{(273 + 927)}{(273 + 27)}} v_1$$

 $\Rightarrow v_2 = 2v_1$

95 (c)

For ideal gas, on free expansion there is no change in temperature. Hence $C_a = C_b$

96 **(b**)

 $v_{rms} > v_{av} > v_{mp}$

97 (a)

According to Boyle's law, pV = k (a constant)

Or
$$p \frac{m}{p} = k$$
 or $p = \frac{pm}{k}$

Or
$$p = \frac{p}{k}$$
 (where, $\frac{k}{m} = k$ a constant)

So,
$$\rho_1 = \frac{p_1}{k}$$
 and $V_1 \frac{p_1}{k} = \frac{m_1}{p_1} = \frac{m_1}{p_1/k} = \frac{km_1}{\rho_1}$

Similarly,
$$V_2 = \frac{km_2}{p_2}$$

Total volume =
$$V_1 + V_2 = k \left(\frac{m_1}{p_1} + \frac{m_2}{p_2} \right)$$

Let p be the common pressure and ρ be the common density of mixture. Then

$$\rho = \frac{m_1 + m_2}{V_1 + V_2} = \frac{m_1 + m_2}{k \left(\frac{m_1}{P_1} + \frac{m_2}{P_2}\right)}$$

$$\therefore p = k\rho = \frac{m_1 + m_2}{\frac{m_1}{P_1} + \frac{m_2}{P_2}} = \frac{P_1 P_2 (m_1 + m_2)}{(m_1 P_2 + m_2 P_1)}$$

98 (c)

 $v_{rms} = \sqrt{\frac{3RT}{M}}$. According to problem T will become 2T and M will becomes M/2 so the value of v_{rms}

will increase by $\sqrt{4} = 2$ times, *i. e.*, new root mean square velocity will be 2v

99 (a

Here,
$$\frac{K_1}{K_2} = \frac{1}{2}, \frac{r_1}{r_2} = \frac{1}{2}$$

$$\therefore \frac{A_1}{A_2} = \frac{1}{4}$$

$$\frac{dx_1}{dx_2} = \frac{1}{2}, \frac{dQ_2}{dt} = 4 \text{ cals}^{-1}, \qquad \frac{dQ_1}{dt} = ?$$

$$\frac{dQ_2/dt}{dQ_1/dt} = \frac{K_2 A_2 dT/dx_2}{K_1 A_1 dT/dx_1} = \frac{K_2}{K_1} \frac{A_2}{A_1} \frac{dx_1}{dx_2}$$

$$= 2 \times 4 \times \frac{1}{2} = 4$$

$$\frac{dQ_1}{dt} = \frac{dQ_2/dt}{4} = \frac{4}{4} = 1 \text{ cals}^{-1}$$

100 (b)

At lower pressure we can assume that given gas behaves as ideal gas so $\frac{PV}{RT}$ = constant but when pressure increases, the decrease in volume will not take place in same proportion so $\frac{PV}{RT}$ will increase

101 (d)

Let initial conditions = V, T

And final conditions = V', T'

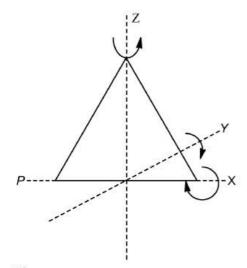
By Charle's law $V \propto T$ [P remains constant]

$$\frac{V}{T} = \frac{V'}{T'} \Rightarrow \frac{V}{T} = \frac{V'}{1.2T'} \Rightarrow V' = 1.2V$$

But as per question, volume is reduced by 10% means

$$V' = 0.9V$$

So percentage of volume leaked out


$$=\frac{(1.2-0.9)V}{1.2V}\times100=25\%$$

102 (c)

As temperature requirement is not given so, the molecule of a triatomic gas has a tendency of rotating about any of three coordinate axes. So, it has 6 degrees of freedom; 3 translational and 3 rotational.

CLICK HERE

Thus,

(3 translational+3 rotational) at room temperature.

103 (c)

We have
$$v_{\rm rms} = \sqrt{\frac{v_1^2 + v_2^2 + ... + v_n^2}{n}}$$

$$= \sqrt{\frac{4 + 25 + 9 + 36 + 9 + 25}{6}}$$

$$= \sqrt{\frac{108}{6}} = \sqrt{18} = 3\sqrt{2} = 3 \times 4$$

1.414 = 4.242 unit.

104 (a)

According to ideal gas equation

$$PV = nRT \text{ or } \frac{V}{T} = \frac{nR}{P}$$

At constant pressure

$$\frac{V}{T} = \text{constant}$$

Hence graph (a) is correct

105 (a)

Temperatures $T_1 = 15^{\circ}\text{C} = 15 + 273 = 288 \text{ K}$ $T_2 = 35^{\circ}\text{C} = 35 + 273 = 308 \text{ K}$

Volume remains constant.

So,
$$\frac{p_1}{T_1} = \frac{p_2}{T_2}$$

 $\frac{p_1}{p_2} = \frac{T_1}{T_2} \Rightarrow \frac{p_1}{p_2} = \frac{288}{308}$
 $\frac{p_2}{p_1} = \frac{308}{288}$

% increases in pressure= $\frac{p_2-p_1}{r} \times 100$

$$=\frac{308-288}{288}\times100$$

≈ 7%

106 (c)

$$v_{av} = \sqrt{\frac{8RT}{\pi M}} \Rightarrow T \propto M \quad [\because v_{av}, R \to \text{constant}]$$

$$\Rightarrow \frac{T_{H_2}}{T_{O_2}} = \frac{M_{H_2}}{M_{O_2}} \Rightarrow \frac{T_{H_2}}{(273 + 31)} = \frac{2}{32}$$
$$\Rightarrow T_{H_2} = 19 K = -254^{\circ}C$$

107 (d)

Kinetic energy per g mole $E = \frac{f}{2}RT$

If nothing is said about gas then we should calculate the translational kinetic energy

i.e.,
$$E_{\text{Trans}} = \frac{3}{2}RT = \frac{3}{2} \times 8.31 \times (273 + 0)$$

= 3.4 × 10³ J

108 (a)

According to Gay Lussac's law $p \propto T$

$$\therefore \frac{dp}{p} \times 100 = \frac{dT}{T} \times 100$$

$$1 = \frac{1}{T} \times 100$$

$$\Rightarrow T = 100 \text{ K}$$

109 (c)

Specific heat at constant pressure (C_p) is the amount of heat (Q) required to raise n moles of substance by $\Delta\theta$ when pressure is kept constant. Then

$$C_p = \frac{Q}{n\Delta\theta}$$

Given, Q=70 cal, n=2,

$$\Delta\theta = (35 - 35)^{\circ}C = 5^{\circ}C$$

$$C_p = \frac{70}{2 \times 5} = 7 \text{ cal mol}^{-1} - K^{-1}$$

From Mayer's formula $C_p - C_V = R$

where R is gas constant (= 2 cal mol^{-1})

$$7 - C_V = 2$$

$$\Rightarrow C_V = 5 \text{ cal mol}^{-1} - K^{-1}$$

Hence, amount of heat required at constant volume (C_V) is

$$Q' = nC_V \Delta \theta$$

$$Q' = 2 \times 5 \times 5 = 50 \text{ cal}$$

110 (b)

 $v_{rms} \propto \sqrt{T}$; To double the rms velocity temperature should be made four times, i.e.,

$$T_2 = 4T_1 = 4(273 + 0) = 1092K = 819$$
°C

In a given mass of the gas

$$n = \frac{\rho v}{kT}$$

k being Boltzmann's constant.

$$PV = NkT \Rightarrow \frac{N_A}{N_B} = \frac{P_A V_A}{P_B V_B} \times \frac{T_B}{T_A}$$

$$\Rightarrow \frac{N_A}{N_B} = \frac{P \times V \times (2T)}{2P \times \frac{V}{4} \times T} = \frac{4}{1}$$

113 (b)

$$VP^3 = \text{constant} = k \Rightarrow P = \frac{k}{V^{1/3}}$$

Also
$$PV = \mu RT \Rightarrow \frac{k}{V^{1/3}}$$
. $V = \mu RT \Rightarrow V^{2/3} = \frac{\mu RT}{k}$

Hence
$$\left(\frac{V_1}{V_2}\right)^{2/3} = \frac{T_1}{T_2} \Rightarrow \left(\frac{V}{27V}\right)^{2/3} = \frac{T}{T_2} \Rightarrow T_2 = 9T$$

114 (d)

Vander waal's equation is followed by real gases

115 (b)

Molecular mass of He; M = 4g

$$\Rightarrow$$
 Molar value of $C_V = Mc_V = 4 \times 3 =$

$$12 \frac{J}{mole-kelvin}$$

At constant volume $P \propto T$, therefore on doubling the pressure temperature also doubles

$$i.\,e.\,,T_2=2T_1\Rightarrow \Delta T=T_2-T_1=273K$$

Also
$$(\Delta Q)_V = \mu C_V \Delta T = \frac{1}{2} \times 12 \times 273 = 1638J$$

116 (a)

Here, $h_1 = 50 \text{ cm}, t_1 = 50^{\circ}\text{C}$

$$h_2 = 60 \text{ cm}, t_2 = 100^{\circ}\text{C}$$

Now,
$$\frac{h_1}{h_2} = \frac{d_2}{d_1} = \frac{d_0}{1+\gamma t_2} \times \frac{1+\gamma t_1}{d_0}$$

$$\frac{50}{20} = \frac{1 + \gamma \times 50}{20}$$

$$\begin{array}{cc} 60 & 1 + \gamma \times 100 \\ & 1 \end{array}$$

$$\therefore \ \gamma = \frac{1}{200} = 0.005^{\circ}C^{-1}$$

117 (d)

Vander Waal's gas constant $b = 4 \times \text{total volume}$ of all the molecules of the gas in the enclosure

Or
$$b = 4 \times N \times \frac{4}{3}\pi \left(\frac{d}{2}\right)^3 = \frac{2}{3}\pi N d^3$$

$$= \frac{2}{3} \times 3.14 \times 6.02 \times 10^{23} \times (2.94 \times 10^{-10})^3$$

$$=32 \times 10^{-6} \frac{m^3}{mol}$$

118 (a)

From ideal gas equation

$$pV = nkT$$

$$p = \frac{n}{V}kT$$

Here,
$$\frac{n}{v} = 5/\text{cm}^3 = 5 \times 10^6/\text{m}^3$$

=
$$(5 \times 10^6/\text{m}^3)(1.38 \times 10^{-23}/\text{JK}^{-1}) \times 3\text{K}$$

 $p = 20.7 \times 10^{-17} \text{ Nm}^{-2}$

119 (d)

Escape velocity from the earth's surface is

11.2 km/sec

So,
$$v_{rms} = v_{\text{escape}} = \sqrt{\frac{3RT}{M}} \Rightarrow T = \frac{(v_{\text{escape}})^2 \times M}{3R}$$

$$= \frac{(11.2 \times 10^3)^2 \times (2 \times 10^{-3})}{3 \times 8.31} = 10063K$$

120 (d)

$$v = \sqrt{\frac{\gamma P}{\rho}} = \sqrt{\frac{\frac{5}{3} \times 10^3}{2.6}} = 25m/s$$

121 (a)

The temperature at which protons in a proton gas would have enough energy to overcome Coulomb barrier between them is given by

$$\frac{3}{2}k_BT = K_{av}$$
 ...(i)

Where k_{av} is the average kinetic energy of the proton, T is the temperature of the proton gas and k_B is the Boltzmann constant

From (i), we get
$$T = \frac{2K_{av}}{3K_B}$$

Substituting the values, we get

$$T = \frac{2 \times 4.14 \times 10^{-14} J}{3 \times 1.38 \times 10^{-23} J K^{-1}} = 2 \times 10^9 K$$

The pressure exerted by the gas,

$$p = \frac{1}{3}\rho c^2$$
$$= \frac{1}{3}\frac{m}{V}\bar{c}^2$$
$$= \frac{2}{3}\left(\frac{1}{2}m\bar{c}^2\right)$$

 $(\because \frac{1}{2}m\bar{c}^2 = \frac{E}{V} = \text{energy per unit volume}, V$ = 1)

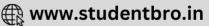
$$p = \frac{2}{3}E$$

Here,
$$\frac{D_1}{D_2} = \frac{1}{2}$$

$$\frac{A_1}{A_2} = \frac{D_1^2}{D_2^2} = \frac{1}{4}$$

$$\frac{dx_1}{dx_2} = \frac{2}{1}$$

$$\frac{dQ_1}{dt} = KA_1 \frac{dT}{dx_1} : \frac{dQ_2}{dt} = KA_2 \frac{dT}{dx_2}$$


$$\frac{dQ_1/dt}{dQ_2/dt} = \frac{A_1}{dx_1} \cdot \frac{dx_2}{A_2} = \frac{1}{4} \times \frac{1}{2} = \frac{1}{8}$$

124 (d)

Total pressure (P) of gas = Actual pressure of gas P_a + aqueous vapour pressure (P_V) $\Rightarrow P_a = P - P_V = 735 - 23.8 = 711.2mm$

Let for mixture of gases, specific heat at constant volume be C_V

$$C_V = \frac{n_1(C_V)_1 + n_2(C_V)_2}{n_1 + n_2}$$

 $C_V = \frac{n_1(C_V)_1 + n_2(C_V)_2}{n_1 + n_2}$ where for oxygen; $C_{V1} = \frac{5R}{2}$, $n_1 = 2$ mol

For helium; $C_{V_2} = \frac{3R}{2}$, $n_2 = 8$ mol

Therefore, $C_V = \frac{\frac{2 \times 5R}{2} + 8 \times \frac{3R}{2}}{2 + 8} = \frac{17R}{10} = 1.7 R$

126 (a)

For one *g mole*; average kinetic energy = $\frac{3}{2}RT$

127 (d)

As we know 1 mol of any ideal gas at STP occupies a volume of 22.4 litres.

Hence number of moles of gas $\mu = \frac{44.8}{22.4} = 2$

Since the volume of cylinder is fixed,

Hence $(\Delta Q)_V = \mu C_V \Delta T$

$$=2\times\frac{3}{2}R\times10=30R\ \left[\because(C_V)_{mono}=\frac{3}{2}R\right]$$

The ideal gas law is the equation of state of an ideal gas. The state of an amount of gas is determined by its pressure, volume and temperature. The equation has the form

$$pV = nRT$$

where, p is pressure, V the volume, n the number of moles, R the gas constant and T the temperature.

$$\therefore \frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$$

Given, $p_1 = 200 \text{ kPa}, V_1 = V, T_1 = 273 +$

 $22 = 295 \text{ K}, V_2 = V + 0.02 V$

$$T_2 = 273 + 42 = 315 \text{ K}$$

$$\frac{200 \times V}{295} = \frac{p_2 \times 1.02V}{315}$$

$$\Rightarrow p_2 = \frac{200 \times 315}{295 \times 1.02}$$

 $p_2 = 209 \text{ kPa}$

129 (c)

$$PV = \mu RT \Rightarrow \mu = \frac{PV}{RT} = \frac{21 \times 10^4 \times 83 \times 10^{-3}}{8.3 \times 300}$$

= 7

130 (b)

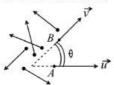
An ideal gas is a gas which satisfying the assumptions of the kinetic energy.

$$P = \frac{2}{2}E$$

132 (b)

 $\gamma = 7/5$ for a diatomic gas

134 (c)


$$v_{rms} \propto \frac{1}{\sqrt{M}} \Rightarrow \frac{v_{O_2}}{v_{H_2}} = \sqrt{\frac{M_{H_2}}{M_{O_2}}} \Rightarrow \frac{C}{v_{H_2}} = \sqrt{\frac{2}{32}} = \frac{1}{4}$$

 $\Rightarrow v_{H_2} = 4C \ cm/s$

$$P \propto T \Rightarrow \frac{P_1}{P_2} = \frac{T_1}{T_2} \Rightarrow \frac{P_2 - P_1}{P_1} = \frac{T_2 - T_1}{T_1}$$

 $\Rightarrow \left(\frac{\Delta P}{P}\right)\% = \left(\frac{251 - 250}{250}\right) \times 100 = 0.4\%$

$$v_{rms} \propto \sqrt{T} \Rightarrow \frac{(v_{rms})_2}{(v_{rms})_1} = \sqrt{\frac{T_2}{T_1}}$$

$$\Rightarrow 2 = \sqrt{\frac{T_2}{300}} \Rightarrow T_2 = 1200K = 927^{\circ}C$$

Figure shows the particles each moving with same speed v but in different directions. Consider any two particles having angle θ between directions of their velocities

Then, $\overrightarrow{v_{\rm rel}} = \overrightarrow{v_B} - \overrightarrow{v_A}$

$$i.e., v_{\rm rel} = \sqrt{v^2 + v^2 - 2vv\cos\theta}$$

$$\Rightarrow v_{\rm rel} = \sqrt{2v^2(1-\cos\theta)} = 2v\sin(\theta/2)$$

So averaging $v_{\rm rel}$ over all pairs

$$\bar{v}_{\text{rel}} = \frac{\int_{0}^{2\pi} v_{\text{rel}} d\theta}{\int_{0}^{2\pi} d\theta} = \frac{\int_{0}^{2\pi} 2v \sin(\theta/2)}{\int_{0}^{2\pi} d\theta}$$
$$= \frac{2v \times 2[-\cos(\theta/2)]_{0}^{2\pi}}{2\pi}$$
$$\Rightarrow \bar{v}_{\text{rel}} = (4v/\pi) > v \quad [\text{as } 4/\pi > 1]$$

$$\Rightarrow \bar{v}_{\rm rel} = (4v/\pi) > v \quad [as 4/\pi > 1]$$

138 (b)

Since volume is constant,

Hence
$$\frac{P_1}{P_2} = \frac{T_1}{T_2} \Rightarrow \frac{1}{3} = \frac{(273+30)}{T_2}$$

 $\Rightarrow T_2 = 909K = 636^{\circ}C$

139 (d)

The value of $\frac{pV}{r}$ for one mole of an ideal gas = gas constant $= 2 \text{ cal mol}^{-1} \text{K}^{-1}$

140 (d)

Mean kinetic energy for μ mole gas = $\mu \cdot \frac{J}{2}RT$

$$\therefore E = \mu \frac{7}{2} RT = \left(\frac{m}{M}\right) \frac{7}{2} NkT = \frac{1}{44} \left(\frac{7}{2}\right) NkT$$
$$= \frac{7}{88} NkT \text{ [As } f = 7 \text{ and } M = 44 \text{ for } CO_2]$$

$$V \propto T \Rightarrow \frac{V_1}{V_2} = \frac{T_1}{T_2} \Rightarrow \frac{V}{2V} = \frac{(273 + 27)}{T_2} = \frac{300}{T_2}$$

 $\Rightarrow T_2 = 600K = 327^{\circ}\text{C}$

142 (a)

$$C_P - C_V = R = 2.\frac{cal}{g - mol - K}$$

Which is correct for option (a) and (b). Further the ratio $\frac{C_P}{C_V}$ (= γ) should be equal to some standard value corresponding to that of either, mono, di, or triatomic gases. From this point of view option (a) is correct because $\left(\frac{C_P}{C_V}\right)_{mono} = \frac{5}{3}$

143 (a)

$$v_{rms} = \sqrt{\frac{3RT}{M}} \Rightarrow T \propto M \quad [\because v_{rms}, R \rightarrow \text{constant}]$$

$$T_{rr} = M_{rr} \qquad T_{rr} \qquad 2$$

$$\frac{T_{H_2}}{T_{O_2}} = \frac{M_{H_2}}{M_{O_2}} = \frac{T_{H_2}}{(273 + 47)} = \frac{2}{32} \Rightarrow T_{H_2} = 20K$$

Molecules of ideal gas behaves like perfectly elastic rigid sphere

145 (d)

$$PV = mrT \Rightarrow P \propto m \ [\because V, r, T \rightarrow \text{constant}]$$

$$\Rightarrow \frac{m_1}{m_2} = \frac{P_1}{P_2} \Rightarrow \frac{10}{m_2} = \frac{10^7}{2.5 \times 10^6} \Rightarrow m_2 = 2.5 \text{ kg}.$$

Hence mass of the gas taken out of the cylinder = 10 - 2.5 = 7.5kg

147 (b)

$$(\Delta Q)_{\nu} = \mu C_{\nu} \Delta T$$
 and $(\Delta Q)_{\nu} = \mu C_{\nu} \Delta T$

$$\Rightarrow \frac{(\Delta Q)_V}{(\Delta Q)_P} = \frac{C_V}{C_P} = \frac{\frac{3}{2}R}{\frac{5}{2}R} = 3/5$$

$$\left[\because (C_V)_{mono} = \frac{3}{2}R, (C_P)_{mono} = \frac{5}{2}R \right]$$
$$\Rightarrow (\Delta Q)_V = \frac{3}{5} \times (\Delta Q)_P = \frac{3}{5} \times 210 = 126J$$

148 (d)

Root mean square velocity of gas molecules

$$v_{\rm rms} = \sqrt{\frac{3RT}{M}}$$

or

$$v_{\rm rms} \propto \frac{1}{\sqrt{M}}$$

$$\frac{v_{\rm O_3}}{v_{\rm O_2}} = \sqrt{\frac{M_{\rm O_2}}{M_{\rm O_3}}}$$

Here, $M_{O_2} = 32$, $M_{O_3} = 48$

$$\therefore \frac{v_{03}}{v_{02}} = \sqrt{\frac{32}{48}} = \frac{\sqrt{2}}{\sqrt{3}}$$

$$v_{rms} = \sqrt{\frac{3RT}{M}} \Rightarrow v_{rms} \propto \frac{1}{\sqrt{M}}$$

150 (c)

For mono atomic gas, C_V is constant $\left(\frac{3}{2}R\right)$. It doesn't vary with temperature

151 (a)

$$PV = \mu RT = \frac{m}{M}RT$$

$$\Rightarrow \frac{PV}{T} \propto \frac{1}{M}$$
 [: $M = \text{molecule mass}$]

From graph
$$\left(\frac{PV}{T}\right)_A < \left(\frac{PV}{T}\right)_B < \left(\frac{PV}{T}\right)_C$$

$$\Rightarrow M_A > M_B > M_C$$

$$\frac{\Delta Q}{\Delta t} = KA\left(\frac{\Delta T}{\Delta x}\right) = K\pi r^2 \left(\frac{\Delta T}{l}\right) \propto \frac{r^2}{l}$$

As $\frac{r^2}{l}$ is maximum for (d), it is the correct choice.

153 (a)

Internal energy of the gas remains constant, hence

$$T_2 = T$$

Using

$$p_1 V_1 = p_2 V_2 p. \frac{V}{2} = p_2 V_2$$

$$p.\frac{v}{2} = p_2 V$$

$$p_2 = \frac{p}{2}$$

154 (d)

The square root of \bar{v}^2 is called the root mean square velocity (rms) speed of the molecules.

$$v_{\text{rms}} = \sqrt{\bar{v}^2} = \sqrt{\frac{v_1^2 + v_2^2 + v_3^3 + v_4^4}{4}}$$
$$= \sqrt{\frac{(1)^2 + (2)^2 + (3)^2 + (4)^2}{4}}$$
$$= \sqrt{\frac{1 + 4 + 9 + 16}{4}} =$$

$$\sqrt{\frac{30}{4}} = \sqrt{\frac{15}{2}} \text{ kms}^{-1}$$

155 (b)

Using Newton's law of cooling,

$$\log \frac{\theta_2 - \theta_0}{\theta_1 - \theta_0} = -Kt$$

$$Log \frac{40-\theta_0}{50-\Omega} = -K \times 5$$
(i)

$$\log \frac{40 - \theta_0}{50 - \theta_0} = -K \times 5 \quad(i)$$

$$\log \frac{33.33 - \theta_0}{40 - \theta_0} = -K \times 5 \quad(ii)$$

$$\frac{40 - \theta_0}{50 - \theta_0} = \frac{33.33 - \theta_0}{40 - \theta_0}$$

On solving, we get

$$\theta_0 = 19.95$$
°C ≈ 20 °C

157 (c)

- 1. The dotted line in the diagram shows that there is no derivation in the value of $\frac{pV}{nT}$ for different temperature T_1 and T_2 for increasing pressure so, this gas behaves ideally. Hence, dotted line corresponds to 'ideal' gas behavior.
- 2. At high temperature, the derivation of the gas is less and at low temperature the derivation of gas is more. In the graph, derivation for T_2 is greater than for T_1 . Thus,

$$T_1 > T_2$$

3. Since, the two curves intersect at dotted line so, the value of $\frac{pV}{nT}$ at that point on the *y*-axis is same for all gases.

158 (d)

Since $v_{rms} \propto \sqrt{T}$. Also mean square velocity $\overline{v^2} = v_{rms}^2$

159 (b)

$$v_{rms} \propto \frac{1}{\sqrt{M}} \Rightarrow V_H > V_N > V_O \ [\because M_H < M_N < M_O]$$

160 (b)

$$P_f = 2p + \bar{p}$$

Saturated vapour pressure will not change if temperature remains constant.

161 (c)

162 (d)

$$\begin{split} PV &= nRT \\ \Rightarrow PV &= \frac{\omega}{M}RT \\ \frac{PM}{RT} &= \frac{\omega}{V} = e \\ \Rightarrow e &= \frac{PM}{RT} = \frac{P \times m \times N_A}{RT} = \frac{Pm}{\left(\frac{R}{N_A}\right)T} = \frac{Pm}{kT} \end{split}$$

163 (b)

Thermal energy corresponds to internal energy

Mass=1 kg
Density =
$$4 \text{ kg m}^{-3}$$

$$Volume = \frac{Mass}{Density} = \frac{1}{4} m^3$$

Pressure =
$$8 \times 10^4 \text{ Nm}^{-2}$$

Internal energy =
$$\frac{5}{2} p \times V = 5 \times 10^4 \text{ J}$$

164 (b)

$$V_t = V_0(1 + \alpha t) = 0.5 \left(1 + \frac{1}{273} \times 819\right) = 2 \ litre$$

= $2 \times 10^{-3} m^3$

165 (c)

Here,
$$m = 10 \text{ g} = 10^{-2} \text{ kg}$$

 $v = 300 \text{ ms}^{-1}$, $\theta = ?C$, $= 150 \text{ J-kg}^{-1}\text{K}^{-1}$
 $Q = \frac{50}{100} \left(\frac{1}{2} m v^2\right) = \frac{1}{4} \times 10^{-2} (300)^2 = 225 \text{ J}$

From Q = cm A

$$\theta = \frac{Q}{cm} = \frac{225}{150 \times 10^{-2}} = 150$$
°C

166 (a)

At constant temperature

PV = constant

$$\Rightarrow \frac{P_1}{P_2} = \frac{V_2}{V_1} \Rightarrow \frac{70}{120} = \frac{V_2}{1200} \Rightarrow V_2 = 700 \ ml$$

167 (d)

$$P \propto \frac{1}{V} \Rightarrow \frac{V_2}{V_1} = \frac{P_1}{P_2} = \frac{100}{105} \Rightarrow V_2 = \frac{100}{105} V_1$$

= 0.953 V_1

% change in volume = $\frac{V_1 - V_2}{V_1} \times 100$

$$= \frac{V_1 - 0.953V_1}{V_1} \times 100 = 4.76\%$$

168 **(a**)

Average kinetic energy $E = \frac{f}{2}kT = \frac{3}{2}kT$

$$\Rightarrow E = \frac{3}{2} \times (1.38 \times 10^{-23})(273 + 30)$$
$$= 6.27 \times 10^{-21}I$$

$$= 0.039eV < 1 eV$$

169 (c)

$$C_P - C_v = R$$

Fractional part of heat energy = $\frac{C_P - R}{C_P}$

$$=\frac{\frac{7}{2}R-R}{\frac{7}{2}R}=\frac{5}{7}$$

170 (c)

RMS velocity doesn't depend upon pressure, it depends upon temperature only,

ie.,
$$v_{\rm rms} \propto \sqrt{T}$$
.

$$\Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{T_1}{T_2}} \Rightarrow \frac{200}{v_2}$$

$$= \sqrt{\frac{(273 + 27)}{(273 + 127)}} = \sqrt{\frac{300}{400}}$$

$$\Rightarrow v_2 = \frac{400}{\sqrt{3}} \text{ m/s}$$

171 (a)

$$\frac{F}{2}n_1kT_1 + \frac{F}{2}n_2kT_2 + \frac{F}{2}n_3kT_3$$

$$= \frac{F}{2}(n_1 + n_2 + n_3)kT$$

$$T = \frac{n_1T_1 + n_2T_2 + n_3T_3}{n_1 + n_2 + n_3}$$

172 (a)
As
$$\rho - \rho_0 (1 - \gamma \Delta T)$$

 $\therefore 9.7 = 10(1 - \gamma \times 100)$
 $\frac{9.7}{10} = 1 - \gamma \times 100$
 $\gamma \times 100 = 1 - \frac{9.7}{10} = \frac{0.3}{10} = 3 \times 10^{-2}$
 $\gamma = 3 \times 10^{-4} \therefore \alpha = \frac{1}{3} \gamma = 10^{-4} \text{ °C}^{-1}$.

Let the temperature of junction be Q. In equilibrium, rate of flow of heat through rod 1= sum of rate of flow of heat through rods 2 and 3.

$$\begin{split} &\left(\frac{dQ}{dt}\right)_1 = \left(\frac{dQ}{dt}\right)_2 + \left(\frac{dQ}{dt}\right)_3 \\ &KA\frac{(\theta - 0)}{l} = \frac{KA(90^\circ - \theta)}{l} + \frac{KA(90^\circ - \theta)}{l} \\ &\theta = 2(90^\circ - \theta) \\ &3\theta = 180^\circ, \theta = \frac{180^\circ}{3} = 60^\circ \end{split}$$

175 (a)
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$\frac{(P + h\rho g)1.0}{273 + 12} = \frac{P.V_2}{273 + 35}$$

$$V_2 = 5.4cm^3$$

176 **(d)**

174 (b)

Average kinetic energy \propto Temperature $\Rightarrow \frac{E_1}{E_2} = \frac{T_1}{T_2} \Rightarrow \frac{100}{E_2} = \frac{300}{450} \Rightarrow E_2 = 150J$

177 (a)

Let p_1 and p_2 are the initial and final pressures of the gas filled in A. Then

$$p_1 = \frac{n_A RT}{V} \text{ and } p_2 = \frac{n_A RT}{2V}$$

$$\Delta p = p_2 - p_1 = -\frac{n_A RT}{2V}$$

$$=-\left(\frac{m_A}{M}\right)\frac{RT}{2V}$$

...(i)

where M is the atomic weight of the gas.

Similarly,
$$1.5\Delta p = -\left(\frac{m_B}{M}\right)\frac{RT}{2V}$$
 ...(ii)

Dividing Eq.(ii) by Eq. (i), we get

$$1.5 = \frac{m_B}{m_A}$$
 or $\frac{3}{2} = \frac{m_B}{m_A}$
 $3m_A = 2m_B$

or $3m_A = 2m_B$

178 **(c)**From $\frac{\Delta Q}{\Delta t} = KA \left(\frac{\Delta T}{\Delta x} \right)$

 $\Delta t = \frac{\Delta Q \Delta x}{KA(\Delta T)}$

In arrangement (b), A is doubled and Δx is halved.

$$\therefore \Delta t \to \frac{1/2}{2} \to \frac{1}{4} \text{ time}$$

$$ie, \frac{1}{4} \times 4 \text{ min} = 1 \text{ min}$$

179 **(b)**Here, m = 0.1 kg, $h_1 = 10 \text{ m}$, $h_2 = 5.4 \text{ m}$ $c = 460 \text{ J-kg}^{-1} ^{\circ} \text{C}^{-1}$, $g = 10 \text{ ms}^{-2}$, $\theta = ?$ Energy dissipated, $Q = mg(h_1 - h_2)$ $= 0.1 \times 10(10 - 5.4) = 4.6j \text{ J}$ From $Q = c m \theta$

$$\theta = \frac{Q}{cm} = \frac{4.6}{460 \times 0.1} = 0.1^{\circ}\text{C}$$

180 (b)

Root mean square speed

$$v_{\text{rms}} \propto \frac{1}{\sqrt{\rho}}$$

$$\therefore \frac{v_{\text{rms}_1}}{v_{\text{rms}_2}} = \sqrt{\frac{\rho_2}{\rho_1}}$$
Given,
$$\frac{\rho_1}{\rho_2} = \frac{9}{8}$$

$$\Rightarrow \frac{v_{\text{rms}_1}}{v_{\text{rms}_2}} = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3}$$

181 (c)

$$v_{rms} \propto \frac{1}{\sqrt{M}} \Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{M_2}{M_1}}$$

$$\therefore \frac{1}{\sqrt{2}} = \sqrt{\frac{M_2}{32}} \Rightarrow M_2 = 16. \text{ Hence the gas is } CH_4$$

182 (a)

No. of moles
$$n = \frac{m}{\text{molecular weight}} = \frac{5}{32}$$

So, from ideal gas equation

$$pV = nRT$$

$$\Rightarrow pV = \frac{5}{22}RT$$

183 (a)

According to Avogadro's hypothesis

Pressure of gas A, $P_A = \frac{125 \times 0.6}{1000} = 0.075 \ atm$ Pressure of gas B, $P_B = \frac{150 \times 0.8}{100} = 0.120 \ atm$

Hence, by using Dalton's law of pressure

 $P_{mixture} = P_A + P_B = 0.075 + 0.120 = 0.195 atm$

185 (a)

Average speed (v_{av}) of gas molecules is

$$v_{\rm av} = \sqrt{\frac{8RT}{\pi M}}$$

where *R* is gas constant and *M* the molecular weight.

Given,
$$v_1 = v$$
, $M_1 = 64$, $v_2 = 4v$

Hence, the gas is helium (molecular mass 4).

Heat added to helium during expansion

$$H = nC_V \Delta T = 8 \times \frac{3}{2} R \times$$

30
$$(C_V \text{ for monoatomic gas} = \frac{3}{2}R)$$

= 360 R
= 360 × 8.31 J $(R=8.31 \text{ J mol}^{-1} - \text{K}^{-1})$
 $\approx 3000 \text{ J}$

187 (c)

In Vander Waal's equation $\left(P + \frac{a}{V_2}\right)(V - b) = RT$ a represents intermolecular attractive force and b represents volume correction

188 (b)

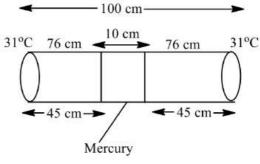
$$C_P - C_V = R \Rightarrow C_P = R + C_V = R + \frac{f}{2}R$$
$$= R + \frac{3}{2}R = \frac{5}{2}R$$

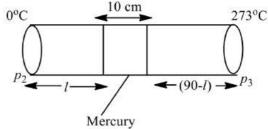
189 (d)

It is because of their low densities

Kinetic energy of a gas molecule

$$E = \frac{3}{2}kT$$


where k is Boltzmann's constant.


$$\therefore E \propto T$$

or
$$\frac{E_1}{E_2} = \frac{T_1}{T_2}$$
 or $\frac{E}{(E/2)} = \frac{300}{T_2}$
or $T_2 = 150 \text{ K}$
 $T_2 = 150 - 273 = -123^{\circ}\text{C}$

191 (c)

On keeping the temperature of the ends of tube at 0°C and 273°C.

Applying ideal gas equation

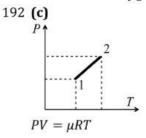
$$\begin{split} \frac{p_1V_1}{T_1} &= \frac{p_2V_2}{T_2} = \frac{p_3V_3}{T_3} \\ \frac{76\times45}{(273+31)} &= \frac{p_2\times l}{(273+0)} = \frac{p_3(90-l)}{273+273} \\ \frac{76\times45}{304} &= \frac{p_2\times l}{273} = \frac{p_3(90-l)}{546} \\ \mathbf{I} & \mathbf{II} & \mathbf{III} \end{split}$$

From II and III

$$\frac{p_2 \times l}{273} = \frac{p_3(90 - l)}{546}$$

(Mercury column is at rest, so pressure

difference
$$p_2 - p_3 = 0 \implies p_2 = p_3$$
)


$$\therefore \qquad \frac{p_2 \times l}{273} = \frac{p_2(90-l)}{546}$$

$$\Rightarrow$$
 2l = 90 - l \Rightarrow l = 30 cm

From I and II

$$\frac{\frac{76 \times 45}{304} = \frac{p_2 \times 30}{273}}{p_2 = \frac{76 \times 45 \times 273}{30 \times 304}}$$

$$p_2 = 102.4$$

$$\Rightarrow V \propto \frac{T}{P} \ (\because \mu \text{ and } R \text{ are fixed})$$

Since, T increases rapidly and P increases slowly thus volume of the gas increases

193 (b)

$$v_{av} \propto \frac{1}{\sqrt{M}} \Rightarrow \frac{v_{He}}{v_H} = \sqrt{\frac{M_H}{M_{He}}} = \sqrt{\frac{1}{4}} = \frac{1}{2} \Rightarrow v_{He} = \frac{v_H}{2}$$

194 (b)

$$v_{rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3 \times 8.3 \times 300}{28 \times 10^{-3}}} = 517m/s$$

195 (d)

Thermal equilibrium implies that the temperature of gases is same. Hence Boyle's law is applicable *i.e.*

$$P_a V_a = P_b V_b$$

196 (d)

$$C_V = \frac{5}{2}R$$
 and $C_p = \frac{7}{2}R$

$$\therefore \qquad \gamma = \frac{C_p}{C_V} = \frac{7}{5}$$

197 (c)

Moist and hot air being lighter rises up and leaves the room throught the ventilator near the roof and fresh air rushes into the room throught the doors.

198 (d)

Root means square velocity of molecule in left part

$$v_{rms} = \sqrt{\frac{3KT}{m_L}}$$

Mean or average speed of molecule in right part

$$v_{av} = \sqrt{\frac{8}{\pi} \frac{KT}{m_R}}$$

According to problem
$$\sqrt{\frac{3KT}{m_L}} = \sqrt{\frac{8}{\pi}} \frac{KT}{m_R}$$

 $\Rightarrow \frac{3}{m_L} = \frac{8}{\pi} \frac{m_R}{m_R} \Rightarrow \frac{m_L}{m_R} = \frac{3\pi}{8}$

199 (c)

Temperature of the gas is concerned only with it's disordered motion. It is no way concerned with it's ordered motion

200 (c)

$$\gamma_{\text{max}} = \frac{\frac{\mu_1 \gamma_1}{\gamma_1 - 1} + \frac{\mu_2 \gamma_2}{\gamma_2 - 1}}{\frac{\mu_1}{\gamma_1 - 1} + \frac{\mu_2}{\gamma_2 - 1}}$$

$$= \frac{\frac{1 \times \frac{5}{3}}{\left[\frac{5}{3} - 1\right] + \left[\frac{7}{5} - 1\right]}}{\left[\frac{1}{\frac{5}{3} - 1}\right] + \left[\frac{1}{\frac{7}{5} - 1}\right]} = \frac{3}{2} = 1.5$$

201 (d)

$$E = \frac{3}{2}RT = \frac{3}{2} \times 8.31 \times 273 = 3.4 \times 10^{3} J$$

202 **(b**)

Given, $p_1 = 100$ mm, $V_1 = 200$ mL and $p_2 = 400$ mm

From Boyle' Law

$$p_1 V_1 = p_2 V_2$$

$$V_2 = \frac{p_1 V_1}{p_2}$$

$$= \frac{100 \times 200}{400}$$

$$V_2 = 50 \text{ mL}$$

Volume of 2 mol gas= $2 \times 50 = 100 \text{ mL}$

203 (b)

$$v_{rms} = \sqrt{\frac{3RT}{M}} \Rightarrow v_{rms}^2 \propto T$$

204 (b)

$$(C_P)_{mix} = \frac{\mu_1 C_{P_1} + \mu_2 C_{P_2}}{\mu_1 + \mu_2} (C_{P_1}(He))$$

$$= \frac{5}{2} R \text{ and } C_{P_2}(H_2) = \frac{7}{2} R)$$

$$= \frac{1 \times \frac{5}{2} R + 1 \times \frac{7}{2} R}{1 + 1} = 3R = 3 \times 2 = 6cal/mol. ^{\circ}C$$

 \div Amount of heat needed to raise the temperature from 0°C to 100°C

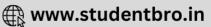
$$(\Delta Q)_P = \mu C_P \Delta T = 2 \times 6 \times 100 = 1200 \ cal$$

205 (c)

The average velocity

$$v_{\text{av}} = \frac{v_1 + v_2 + v_3 + \dots + v_n}{N}$$

= $\frac{1+3+5+7}{4} = 4 \text{ km/s}$


Root mean square velocity

$$v_{rms} = \sqrt{\frac{v_1^2 + v_2^2 + v_3^2 + \dots + v_n^2}{N}}$$

$$= \sqrt{\frac{1 + (3)^2 + (5)^2 + (7)^2}{4}}$$

$$= \sqrt{21} = 4.583 \text{ km/s}$$

Difference between average velocity and root mean square velocity

$$=4.583-4$$

$$=0.583 \text{ km/s}$$

206 (c)

$$V \propto T \Rightarrow \frac{V_1}{V_2} = \frac{T_1}{T_2}$$

 $\Rightarrow \frac{V}{V_2} = \frac{(273 + 27)}{(273 + 327)} = \frac{300}{600} = \frac{1}{2} \Rightarrow V_2 = 2V$

207 (c)

For a closed system, the total number of moles remains constant. So

$$p_1V = n_1RT_1$$
 and $p_2V = n_2RT_2$

$$p(2V) = (n_1 + n_2)RT$$

$$\therefore \frac{p}{T} = \frac{(n_1 + n_2)}{2} R = \frac{1}{2} \left[\frac{P_1}{T_1} + \frac{P_2}{T_2} \right]$$
$$= \frac{1}{2} \left[\frac{p_1 T_2 + p_2 T_1}{T_1 T_2} \right]$$

208 (a)

Most probable speed $v_{mp} = \sqrt{\frac{2kT}{m}} \Rightarrow \frac{1}{2} m v_{mp}^2 = kT$

209 (a)

As
$$dQ = dU + dW$$

 $\therefore dU = dQ - dW = 2240 - 168$
= 2072 J

210 (c)

The root mean square velocity

$$v_{\rm rms} = \sqrt{\frac{3RT}{M}}$$

where *R* is gas constant, *T* the temperature and *M* the molecular weight.

Given, $v_{\text{He}} = v_{\text{H}}$, $T_{\text{H}} = 273 \text{ K}$, $M_{\text{H}} = 2$, $M_{\text{He}} = 4$

$$\therefore \frac{v_{\rm H}}{v_{\rm He}} = \sqrt{\frac{T_{\rm H}}{T_{\rm He}}} \times \frac{M_{\rm He}}{M_{\rm H}}$$

$$\therefore 1 = \sqrt{\frac{273}{T_{\text{He}}} \times \frac{4}{2}}$$

$$\Rightarrow$$
 $T_{\rm He} = 546 \, \mathrm{K}$

In °C,
$$T_{\text{He}} = (546 - 273)$$
°C = 273°C

212 (b)

The molecules of a gas are in a state of random motion. They continuously collide against the walls of the container. Even at ordinary temperature and pressure, the number of molecular collisions with walls is very large. During each collision, certain momentum is transferred to the walls of the

container. The pressure exerted by the gas is due to continuous bombardment of gas molecules against the walls of the container. Due to this continuous bombardment, the walls of the container experience a continuous force which is equal to the total momentum imparted to the walls per second. The average force experienced per unit area of the walls container determines the pressure exerted by the gas. This should be clear from the fact that although the molecular collisions are random the pressure remains constant.

213 (c)

Given,
$$pT^2$$
=constant

$$\therefore \qquad \left(\frac{nRT}{V}\right)T^2 = \text{constant}$$
or $T^3V^{-1} = \text{constant}$

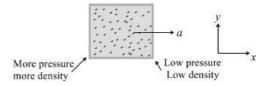
Differentiating the equation, we get

$$\frac{3T^2}{V}.dT - \frac{T^3}{V^2}.dV = 0$$
$$3.dT = \frac{T}{T}.dV$$

or

From the equation, $dV = V_{\nu}$. dT

 γ = coefficient of volume expansion of


gas

$$= \frac{dV}{V \cdot dT}$$

$$\gamma = \frac{dV}{V \cdot dT} = \frac{3}{T}$$

215 (b)

Pressure will be less in front portion of the compartment because in accelerated frame molecules will feel pseudo force in backward direction. Also density of gas will be more in the back portion

216 (a)

$$v_{\text{rms}} \propto \sqrt{T}$$

$$\Rightarrow \frac{v_1^2}{v_2^2} = \frac{T_1}{T_2}$$

$$\Rightarrow \frac{v^2}{2v^2} = \frac{273}{T_2}$$

$$\Rightarrow T_2 = 1092 \text{ K}$$

$$= 819^{\circ}\text{C}$$

217 (c)

Average velocity of gas molecule is

$$\begin{aligned} v_{av} &= \sqrt{\frac{8RT}{\pi M}} \Rightarrow v_{av} \times \frac{1}{\sqrt{M}} \\ \Rightarrow \frac{< C_H >}{< C_{He} >} &= \sqrt{\frac{M_{He}}{M_H}} = \sqrt{\frac{4}{1}} = 2 \Rightarrow < C_H > = 2 \\ &< C_{He} > \end{aligned}$$

$$\begin{split} &\mu = \mu_1 + \mu_2 \\ &\frac{P(2V)}{RT_1} = \frac{P'V}{RT_1} + \frac{P'V}{RT_2} \Rightarrow \frac{2P}{RT_1} = \frac{P'}{R} \Big[\frac{T_2 + T_1}{T_1 T_2} \Big] \\ &P' = \frac{2PT_2}{(T_1 + T_2)} = \frac{2 \times 1 \times 600}{(300 + 600)} = \frac{4}{3} atm \end{split}$$

$$C_V = \frac{R}{(\gamma - 1)} \Rightarrow \gamma = 1 + \frac{R}{C_V} = 1 + \frac{R}{\frac{3}{2}R} = \frac{5}{3}$$

220 (b)

$$v_{rms} = \sqrt{\frac{3P}{\rho}} = \sqrt{\frac{3PV}{m}} \Rightarrow v_{rms} \propto \sqrt{\frac{P}{m}}$$

$$\Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{P_1}{P_2} \times \frac{m_2}{m_1}} \Rightarrow \frac{v}{2v} = \sqrt{\frac{P_0}{P2} \times \frac{m/2}{m}} \Rightarrow P_2$$

$$= 2P_0$$

221 (a)

Kinetic energy for 1 mole gas $E = \frac{f}{2}RT$

$$\Rightarrow E_{\text{Translation}} = \frac{3}{2}RT$$

[: For all gases translational degree of freedom f = 31

222 (c)

$$PV = \mu RT$$
 [Gas equation] $\Rightarrow PV \propto T$

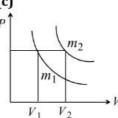
223 (b)

Neglecting bond length, the volume of an oxygen molecule has been taken as 2 times that of one oxygen atom.

In 22.4 litres *i.e.*, $22.4 \times 10^{-3} m^3$, there are

$$N_A = 6.23 \times 10^{23}$$
 molecules

Total volume of oxygen molecules = $2 \times \frac{4}{3} \pi r^3 \times$


 $22.4 \times 10^{-3} m^3$ is occupied by N_A molecules

: Fraction of volume occupied

$$= \frac{2 \times \frac{4}{3} \times \pi \times (1.5 \times 10^{-10})^3 \times 6.2 \times 10^{23}}{(22.4 \times 10^{-3})}$$

No change, because rms velocity of gas depends upon temperature only

225 (c)

$$PV = \mu RT = \frac{m}{M}RT$$

For 1st graph,
$$P = \frac{m_1}{M} \frac{RT}{V_1} \dots (i)$$

$$P = \frac{m_2}{M} \frac{RT}{V_2} \dots (ii)$$

Equating the two, we get, $\frac{m_1}{m_2} = \frac{V_1}{V_2} \Rightarrow m \propto V$

As
$$V_2 > V_1 \Rightarrow m_1 < m_2$$

226 (a)

$$PV = \mu RT \Rightarrow PV \propto T$$

If P and V are doubled then T becomes four times,

$$T_2 = 4T_1 = 4 \times 100 = 400K$$

227 (b)

Ideal gas equation can be written as

$$pV = nRT$$

From Eq. (i), we have

$$\frac{n}{v} = \frac{p}{RT} = \text{constant}$$

So, at constant pressure and temperature, all gases will contain equal number of molecules per unit volume.

228 (b)

RMS velocity is given by

$$v = \sqrt{\frac{3kT}{m}}$$
 or $v^2 = \frac{3kT}{m}$

$$v^2 = \frac{3kT}{m}$$

For a gas, k and m are constants.

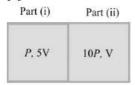
$$\therefore \frac{v^2}{T} = \text{constant}$$

229 (b)

CO is diatomic gas, for diatomic gas


$$C_P = \frac{7}{2}R$$
 and $C_V = \frac{5}{2}R \Rightarrow \gamma_{di} = \frac{C_P}{C_V} = \frac{7R/2}{5R/2} = 1.4$

230 (a)


When gas is filled in a closed container, it exerts pressure on the walls of the vessel. According to kinetic theory this pressure is developed due to the collisions of the moving molecules on the walls of the vessels.

Whenever a molecules collides with the wall, it return with changed momentum and an equal momentum is transferred to the wall. According to Newton's law of motion, the rate of change of momentum of the ball is equal to the force exerted on the wall. Since, the gas contains a large number of molecules which are colliding with the walls of the vessel, they exert a steady force on the walls. This force measured per unit area gives pressure, which is same as the molecules are moving in horizontal direction with constant acceleration.

231 (a)

When the piston is allowed to move the gases are kept separated but the pressure has to be equal. $(P_1 = P_2)$ and final volume x and (6V - x), the no of moles are same in initial and final position at each parts.

$$\begin{array}{l} :: P_1 = P_2 \qquad P_V = n_1RT \\ \frac{n_1RT}{x} = \frac{n_2RT}{6V - x} \quad n_1 = \frac{5PV}{RT} \\ \frac{n_1}{x} = \frac{n_2}{6V - x} \quad n_2 = \frac{10PV}{RT} \\ \Rightarrow \frac{5PV}{xRT} = \frac{10PV}{(6V - x)RT} \Rightarrow \frac{1}{x} = \frac{2}{6V - x} \\ \Rightarrow 6V - x = 2x \Rightarrow x2V \text{ and } 6V - x \Rightarrow 6V - 2V = 4V \\ \therefore (2V, 4V) \end{array}$$

233 (c)

temperature is doubles, kinetic energy will also be doubled

234 (c)

The average kinetic energy of monoatomic gas molecule is $K = \frac{3}{2}k_BT$

Where k_B is the Boltzmann constant and T is the temperature of the gas in kelvin

$$K = \frac{3}{2} \times (1.38 \times 10^{-23} J K^{-1}) \times (300 K)$$

$$= \frac{3 \times (1.38 \times 10^{-23} J K^{-1}) \times (300 K)}{2 \times (1.6 \times 10^{-19} J / eV)}$$

$$= 3.9 \times 10^{-2} eV = 0.039 eV$$

235 (a)

If the volume remains constant, then

$$\frac{p_1}{p_2} = \frac{T_1}{T_2}$$

$$\Rightarrow \frac{p}{p + \frac{0.4}{100}p} = \frac{T}{T+1}$$
or
$$T = 250 \text{ K}$$

236 (a)

From Boyle's law

$$pV = {
m constant}$$

 $\therefore p_1V_1 = p_2V_2$
Here, $p_1 = (h+l)$, $V_1 = \frac{4}{3}\pi r^3$
 $p_2 = l$, $V_2 = \frac{4}{3}\pi (3r)^3$
 $\therefore (h+l)\frac{4}{3}\pi r^3 = l \times \frac{4}{3}\pi (3r)^3$
or $h+l = 27l$
 $\therefore h = 26l$

237 (d)

Degree of freedom f = 3(Translatory)+2(rotatory)+1(vibratory) = 6 $\Rightarrow \frac{C_P}{C_V} = \gamma = 1 + \frac{2}{f} = 1 + \frac{2}{6} = \frac{4}{3} = 1.33$

238 (c)

In the absence of intermolecular forces, there will be no stickness of molecules. Hence, pressure will increase.

- 239 (a) At T = 0K, $v_{rms} = 0$
- 240 (c) The given equation is for 1 g mol gas

 $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ $T_2 = \frac{P_2 V_2}{P_1 V_1} T_1 = \frac{2}{1} \times \frac{3}{1} \times 300 = 1800 K = 1527$ °C

 $\theta_1 < \theta_2 \Rightarrow \tan \theta_1 < \tan \theta_2 \Rightarrow \left(\frac{V}{T}\right) < \left(\frac{V}{T}\right)$

Form
$$PV = \mu RT; \frac{V}{T} \propto \frac{1}{P}$$

Hence $\left(\frac{1}{P}\right)_1 < \left(\frac{1}{P}\right)_2 \Rightarrow P_1 > P_2$

243 (d)

 $C_P - C_V = R$ and R is constant for all gases

244 (b)

For a real gas the two van der Waal's constants and Boyle's temperature (T_B) are related as

$$T_B = \frac{a}{bR}$$

245 **(b)**

$$v_{rms} \propto \sqrt{T}$$

246 (d)

r.m.s. velocity does not depend upon pressure

247 (c)

$$E_{av} = \frac{f}{2}kT = \frac{3}{2} \times 1.38 \times 10^{-23} \times 273$$
$$= 0.56 \times 10^{-20}I$$

248 (c)

As
$$\eta = 1 = \frac{T_2}{T_1}$$

 $\therefore \frac{50}{100} = 1 = \frac{500}{T_1} \text{ or } T_1 = 1000 \text{K}$
Again, $\frac{60}{100} = 1 - \frac{T_2}{1000}$
Or $T_2 = 400 \text{ K}$

249 (a)

Root mean square velocity ($v_{
m rms}$), given by

$$v_{\rm rms} = \sqrt{\frac{3RT}{M}}$$

where R is gas constant, T the temperature and M molecular weight.

Given,
$$T_1 = 27^{\circ}\text{C} = 273 + 27 = 300 \text{ K},$$

 $T_2 = 327^{\circ}\text{C} = 327 + 273 = 600 \text{ K}$

$$\therefore \frac{(v_{\rm rms})_1}{(v_{\rm rms})_2} = \sqrt{\frac{300}{600}} = \sqrt{\frac{1}{2}}$$

 $\Rightarrow \qquad (v_{\rm rms})_2 = \sqrt{2} (v_{\rm rms})_1$

Hence, rms speed increases $\sqrt{2}$ times.

251 (d)

Oxygen being a diatomic gas possesses 5 degrees of freedom, 3 translational and 2 rotational.

Argon being monoatomic has 3 translational degrees of freedom.

Total energy of the system

$$= E_{\text{oxygen}} + E_{\text{argon}}$$
$$= n_1 f_1 \left(\frac{1}{2} RT\right) + n_2 f_2 \left(\frac{1}{2} RT\right)$$

$$= 2 \times 5 \times \frac{1}{2}RT + 4 \times 3 \times \frac{1}{2}RT$$
$$= 5RT + 6RT = 11RT$$

252 (d)

Consider n moles of a gas which undergo isochoric process, ie, V=constant. From first law of thermodynamics,

$$\Delta Q = \Delta W + \Delta U$$

...(i)

Here, $\Delta W = 0$ as V =constant

$$\Delta Q = nC_V \Delta T$$

Substituting in Eq. (i), we get

$$\Delta U = nC_V \Delta T$$

...(ii)

Mayer's relation can be written as

$$C_p - C_V = R$$
$$C_V = C_p - R$$

...(iii)

From Eqs. (ii) and (iii), we have

$$\Delta U = n(C_p - R)\Delta T$$

Given, n = 6, $C_p = 8 \text{ cal mol}^{-1} - \text{K}^{-1}$, $R = 8.31 \text{ J mol}^{-1} - \text{K}^{-1}$

$$\approx 2 \text{ cal mol}^{-1} - \text{K}^{-1}$$

Hence,
$$\Delta U = 6(8-2)(35-20)$$

= $6 \times 6 \times 15 = 540$ cal

253 (d)

Mean kinetic energy of any ideal gas is given by $E = \frac{f}{2}RT$ which is different gases. (f is not same for all gases)

254 (a)

$$\frac{v_1}{v_2} = \frac{T_1}{T_2}$$

$$\frac{1}{2} = \frac{300}{T_2}$$

$$T_2 = 600 \text{ K} = 600 - 273 = 327^{\circ}\text{C}$$

$$\Delta t = 327 - 27 = 300^{\circ}\text{C}$$

255 (c)

Since *P* and *V* are not changing, so temperature remains same

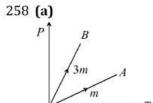
256 (c)

 $v_{r.m.s.}$ is independent of pressure but depends upon temperature as $v_{rms} \propto \sqrt{T}$

257 (d)

CLICK HERE (>>

The main kinetic energy of one mole of gas n degree of freedom.


$$E = \frac{n}{2}RT$$

The mean kinetic energy of one mole of gas per degree of freedom.

$$E' = \frac{E}{n} = \frac{\frac{n}{2}RT}{n}$$
$$E' = \frac{1}{2}RT$$

For a gas, $PV = \mu RT = \frac{m}{M}RT$

For graph $A, PV = \frac{m}{M}RT$

Slope of graph A,

$$\left(\frac{P}{T}\right) = \frac{m}{M} \frac{R}{V} \quad ...(i)$$

For graph $B, PV = \frac{3m}{M}RT$

Slope of graph B,

$$\left(\frac{P}{T}\right) = \frac{3m}{M} \frac{R}{V} \dots (ii)$$

$$\frac{\text{Slope of curve } B}{\text{Slope of curve } A} = \frac{\frac{3m}{M} \frac{R}{V}}{\frac{m}{M} \frac{R}{V}} = \frac{3}{1}$$

259 (c)

According to law of equipartion of energy, kinetic energy per degree of freedom of a gas molecule is

260 (c)

For carbon dioxide, number of moles $(n_1) = \frac{22}{44} =$

molar specific heat of CO2 at constant volume $C_{V_1} = 3 R$

For oxygen, number of moles $(n_2) = \frac{16}{32} = \frac{1}{3}$; molar specific heat of O2 at constant volume

 $C_{V_2} = \frac{5R}{2}$

Let TK be the temperature of mixture.

Heat lost by O_2 = Heat gained by CO_2 .

 $n_2 C_{V_2} \Delta T_2 = n_1 C_{V_1} \Delta T_1$

 $\frac{1}{2} \left(\frac{5}{2} R \right) (310 - T) = \frac{1}{2} \times (3R)(T - 300)$

Or 1550 - 5T = 6T - 1800

Or T = 304.54K = 31.5°C

261 (b)

As
$$dQ = C_p m \Delta T$$

$$\therefore 70 = C_p \times 2(35 - 30)$$

$$C_V = C_p - R$$

$$= 7 - 1.99 = 5.01 \text{ calmol}^{-1} \, ^{\circ}\text{C}^{-1}$$

:.
$$dQ' = C_V m \Delta T$$

= 5.01 \times 2 \times (35 - 30) = 50.1 cal

262 (d)

The difference of C_P and C_V is equal to R, not 2R

264 (b)

Average speed or mean speed of gas molecules

$$\bar{v} = \sqrt{\frac{8RT}{\pi M}}$$
 or $\bar{v} \propto \frac{1}{\sqrt{M}}$

 $\frac{\bar{v}_{\rm H}}{\bar{v}_{\rm He}} = \sqrt{\frac{M_{\rm He}}{M_{\rm H}}}$

 $M_{\rm He} = 4 M_{\rm He}$ Here,

$$\therefore \frac{\bar{v}_{\rm H}}{\bar{v}_{\rm He}} = \sqrt{\frac{4}{1}} = 2 \quad \text{or} \quad \bar{v}_{\rm He}$$
$$= \frac{1}{2}\bar{v}_{\rm H}$$

265 (a)

$$C_V = \frac{f}{2}R$$

For diatomic gas f = 5

$$\therefore C_V = \frac{5}{2}R$$

$$\frac{E_1}{E_2} = \frac{T_1}{T_2} \Rightarrow \frac{E}{2E} = \frac{(273 + 27)}{T_2} \Rightarrow T_2 = 600K$$

= 327°C

267 (b)

Here, $V_0 = 10^3 \text{ cc}$

$$\gamma_r = 180 \times 10^{-6} \, \text{C}^{-1}$$

$$g = 40 \times 10^{-6} ^{\circ} C^{-1}$$
, $t = 100 ^{\circ} C$

$$\gamma_a = \gamma_r - g = (180 - 40)10^{-6}$$

$$V_t = V_0(1 + 140 \times 10^{-6} \times 10^2)$$

$$=(10^3+14)cc$$

: Volume of mercury that will overflow

$$=V_t-V_0=14\ cc$$

268 (c)

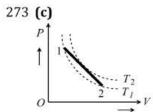
Pressure, $P = \frac{F}{A} = \frac{1}{A} \cdot \frac{\Delta p}{\Delta t}$ [$\Delta p = \text{change in}$ momentum]

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \Rightarrow \frac{1 \times 500}{300} = \frac{0.5 \times V_2}{270} \Rightarrow V_2 = 900 m^3$$

For same isotherm; $T \rightarrow \text{constant}$

$$\therefore P \propto \frac{1}{V} \Rightarrow P_1 V_1 = P_2 V_2$$

Given that, $T = 27^{\circ}\text{C} = 300 \text{ K}$


$$v_{\rm rms} = 1365~{\rm ms}^{-1}$$

We know that

$$v_{\rm rms} = \sqrt{\frac{3RT}{M}}$$
 or $v_{rms}^2 = \frac{3RT}{M}$ or $M = \frac{3RT}{v_{\rm rms}^2}$ or $M = \frac{38N}{v_{\rm rms}^2}$ $M = \frac{3 \times 8.31 \times 300}{1365 \times 1365}$ kg $M = \frac{3 \times 8.31 \times 300}{1365 \times 1365} \times 1000$ g=4 g The molecular weight of helium is 4.

The molecular weight of helium is 4.

Draw two isothermals one passing through points 1 and 2 the other through mid point of straight line joining 1 and 2

 $T_2 > T_1$, at point 1 temperature is T_1 and that at mid point is T_2 and then at point 2 again it is T_1 : The gas is first heated and then cooled towards

274 (d)

Pressure due to an ideal gas is given by

$$p = \frac{M}{3V}v^2$$

Putting $\frac{M}{V} = \rho$, the density of gas

$$p = \frac{1}{3}\rho v^{2}$$

$$\Rightarrow \qquad v = \sqrt{\left(\frac{3p}{\rho}\right)}$$

$$\therefore \qquad v \propto \frac{1}{\sqrt{\rho}}$$

275 (b)

For first vessel, number of moles

$$n_1 = \frac{m_1}{M_1} = \frac{32}{32} = 1$$

Volume=V, Temperature=T

$$p_1V = RT$$

For second vessel number of moles

$$=n_2=\frac{m_2}{M_2}=\frac{4}{2}=2$$

Volume=V, Temperature=2T

$$p_2V = 2R(2T)$$

...(ii)

From Eqs. (i) and (ii),

$$p_2 = 4p_1 = 4p$$

276 (b)

RMS speed of gas molecules does not depends on the pressure of gas (if temperature remains constant) because $p \propto \rho$. If pressure is increased n times density will also increase by n times but $v_{\rm rms}$ remains constant.

277 (d)

$$P = \frac{2}{3} \times \text{(Energy per unit volume)} = \frac{2}{3} \frac{E}{V} \Rightarrow PV = \frac{2}{3} E$$

278 (b)

$$C_P - C_V = R =$$
Universal gas constant

$$V_{rms} = \sqrt{\frac{3RT}{M}}$$

% increase in
$$V_{rms} = \frac{\sqrt{\frac{3RT_2}{M}} \sqrt{\frac{3RT_1}{M}}}{\sqrt{\frac{3RT_1}{M}}} \times 100\%$$

= $\frac{20 - 17.32}{17.32} \times 100 = 15.5\%$

280 (d)

Using
$$\gamma_r = \gamma_a + g$$
, we get $\gamma_r = \gamma_1 + 3\alpha = \gamma_2 + 3\beta$

$$\therefore \beta = \frac{\gamma_1 - \gamma_2}{3} + \alpha$$

281 (a)

As the steel tape is calibrated at 10°C, therefore, adjacent centimeter marks on the steel tape will be separated by a distance of

$$l_t = l_{10}(1 + \alpha_s \Delta T) = (1 + \alpha_s 20) \text{ cm}$$

Length of copper rod at 30°C

$$= 90(1 + \alpha_c 20)$$
cm

Therefore, number of centimeters read on the tape will be

$$= \frac{90(1+\alpha_c 20)}{1(1+\alpha_s 20)} = \frac{90(1+1.7\times10^{-5}\times20)}{1(1+1.2\times10^{-5}\times20)}$$
$$= \frac{90\times1.00034}{1.00024} = 90.01 \text{ cm}$$

282 (c)

At absolute temperature
$$T=0 \Rightarrow v_{rms}=\sqrt{\frac{3RT}{M}}=0$$

Therefore, there is no motion of gas molecules at this temperature

283 **(b)**

284 (c)

A diatomic molecule has three translational and two rotational degrees of freedom

Hence total degrees of freedom f = 3 + 2 = 5

$$\gamma = 1 + \frac{2}{f} \Rightarrow 1.4 = 1 + \frac{2}{f} \Rightarrow \text{Degree of freedom } f = 5$$

⇒ Degree of freedom of diatomic gas is 5 and it's $C_P = \frac{7}{2}R$ and $C_V = \frac{5}{2}R$

287 (a)

Apparent weight (w_a) = Actual weight (w)- upthrust (F), where upthrust = weight of water displaced = $V p\omega g$

Now,
$$F_0 = V_0 \rho_0 g$$
 and $F_{50} = V_{50} \rho_{50} g$

$$\therefore \frac{F_{50}}{F_0} = \frac{V_{50} \rho_{50} g}{V_0 \rho_0 g} = \frac{1 + \gamma_m \times 50}{1 + \gamma_w \times 50}$$

As $\gamma_m < \gamma_w$, therefore, $F_{50} < F_0$ Hence, $(w_a)_{50} (w_a)_0$ or $w_2 > w_1$ or $w_1 < w_2$

288 (c)

For intermolecular attraction is considered in real gas and for real gases pressure is given by

$$P = \frac{nRT}{V - nb} - \frac{n^2a}{V^2}$$
. Here $\left(\frac{n}{V}\right)^2$ represents the reduction in pressure due to intermolecular attraction

289 (a)

 $PV = \mu RT \Rightarrow P \propto \frac{T}{V}$. If T and V both doubled then pressure remains same, i. e., $P_2 = P_1 = 1$ atm = $1 \times 10^5 N/m^2$

290 (a)

 $V \propto T$ [as constant pressure]

291 (d)

$$v_{rms} = \sqrt{\frac{3kT}{m}} = v_{rms} \propto \frac{1}{\sqrt{m}}$$

292 (d)

Specific heat for a monoatomic gas

$$C_V = \frac{3}{2}R$$

$$\therefore \text{ Heat } dQ = \mu C_V \Delta T$$

$$dQ = \mu \times \frac{3}{2} \times R(473 - 273)$$

$$= 4 \times \frac{3}{2} \times R \times 200 \quad (\because \mu = 4)$$

$$\therefore dQ = 4 \times 300R$$

293 **(b)**

Universal gas constant

= 1200R

$$R = C_n - C_V$$

294 (a)

22 g of CO_2 is half mole of CO_2 ie, $n_1 = 0.5$ 16 g of O_2 is half mole of O_2 ie, $n_2 = 0.5$

$$T = \frac{n_1 T_1 + n_2 T_2}{n_1 + n_2}$$

$$= \frac{0.5 \times (27 + 273) + 0.5(37 + 273)}{0.5 + 0.5}$$

$$= 305 \text{ K}$$

$$= 305 - 273 = 32^{\circ}\text{C}$$

295 (a)

$$PV = mrT = m\left(\frac{R}{M}\right)T$$

$$\Rightarrow V = \left(\frac{m}{M}\right)\frac{RT}{P} = \left(\frac{2.2}{44}\right) \times \frac{8.31 \times (273 + 0)}{2 \times (1 \times 10^5)}$$
= 5.67 \times 10^{-4} m^3 = 0.56 litre

296 (c)

If number of molecules in gas increases then number of collisions of molecules with walls of container would also increase and hence the pressure increses, i. e., $P \propto N$.

$$\Rightarrow \frac{P_2}{P_1} = \frac{N_2}{N_1} = \frac{2}{1} \Rightarrow P_2 = 2P_1$$

Pressure of the gas will not be affected by motion of the system, hence by

$$v_{rms} = \sqrt{\frac{3P}{\rho}} \Rightarrow \bar{c}^2 = \frac{3P}{\rho} \Rightarrow P = \frac{1}{3}\rho\bar{c}^2$$

298 (b)

As the temperature increases, the average velocity increases. So the collisions are faster

299 (d)

$$(\Delta Q)_P = \mu C_P \Delta T \Rightarrow 207 = 1 \times C_P \times 10$$

$$\Rightarrow C_P = 20.7 \frac{Joule}{mol - K}. \text{Also } C_P - C_V = R$$

$$\Rightarrow C_V = C_P - R = 20.7 - 8.3 = 12.4 \frac{Joule}{mole - K}$$
So, $(\Delta Q)_V = \mu C_V \Delta T = 1 \times 12.4 \times 10 = 124 J$

300 (a)

At sonstant pressure

$$V \propto T \Rightarrow \frac{V_2}{V_1} = \frac{T_2}{T_1} \Rightarrow T_2 = \left(\frac{V_2}{V_1}\right) T_1$$

 $\Rightarrow T_2 = \left(\frac{3V}{V}\right) \times 273 = 819K = 546$ °C

301 (c)

According to Boyle's law
$$(P_1V_1)_{\text{bottom}} = (P_2V_2)_{\text{top}}$$

 $(10 + h) \times \frac{4}{3}\pi r_1^3 = 10 \times \frac{4}{3}\pi r_2^3 \text{ but } r_2 = 2r_1$
 $\therefore (10 + h)r_1^3 = 10 \times 8r_1^3 \Rightarrow 10 + h = 80 \therefore h$
 $= 70m$

302 (c)

Here temperature remain constant
So
$$P_1V_1 = P_2V_2 \Rightarrow 76 \times 5 = P_2 \times 35$$

$$\Rightarrow P_2 = \frac{76 \times 5}{35} = 10.85 cm \text{ of } Hg$$

303 (b)

For diatomic gases $\frac{c_P}{c_V} = \gamma = 1.4$

304 (a)

Using
$$\frac{c}{5} = \frac{F-32}{9}$$

 $-\frac{183}{5} = \frac{F-32}{9}$
 $F-32 = -\frac{183 \times 9}{5} = -329.4$
 $F = -329.4 + 32 = -297.4^{\circ}$

307 (d)

$$n_1 C_v \Delta T_1 = n_2 C_v \Delta T_2$$

 $10 \times (T - 10) = 20(20 - T)$
 $T - 10 = 40 - 2T$
 $3T = 50 \Rightarrow T = 16.6$ °C

308 (b)

Number of translational degrees of freedom (3) are same for all types of gases

309 (a)

$$\frac{T_A}{M_A} = 4 \frac{T_B}{M_B} \Rightarrow \sqrt{\frac{T_A}{M_A}} = 2 \sqrt{\frac{T_B}{M_B}}$$

$$\Rightarrow \sqrt{\frac{3RT_A}{M_A}} = 2 \sqrt{\frac{3RT}{M_B}} \Rightarrow C_A = 2C_B \Rightarrow \frac{C_A}{C_B} = 2$$

310 (b)

Neon gas is monoatomic and for monoatomic gases

$$C_V = \frac{3}{2}R$$

311 (b)

Thermal capacity = Mass × Specific heat Due to same material both spheres will have same specific heat.

Also mass = Volume $(V) \times Density (\rho)$

: Ratio of thermal capacity

$$= \frac{m_1}{m_2} = \frac{V_1 \rho}{V_2 \rho} = \frac{\frac{4}{3} \pi r_1^3}{\frac{3}{4} \pi r_2^3} = \left(\frac{r_1}{r_2}\right)^3$$
$$= \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

312 (c)

 C_p is always greater than C_V

ie,
$$C_P > C_V$$

313 (a)

As
$$\theta_2 > \theta_1 \Rightarrow \tan \theta_2 > \tan \theta_1 \Rightarrow \left(\frac{T}{P}\right)_2 > \left(\frac{T}{P}\right)_1$$

Also from $PV = \mu RT; \frac{T}{P} \propto V \Rightarrow V_2 > V_1$

314 (a)

According to kinetic theory, molecules of a liquid are in a state of continuous random

motion. They continuously collide against the walls of the container. During each collision, certain momentum is transferred to the walls of the container. So, kinetic energy of molecules increases, hence due to random motion, the temperature increase. So, random motion of molecules and not ordered motion cause rise of temperature.

315 (d)

From Maxwell's velocity distribution law, we infer that

$$v_{\rm rms} > v > v_{\rm mp}$$

ie, most probable velocity is less than the root mean square velocity.

316 (a)

Mayer Formula

317 **(b)**

Temperature remain constant so

$$v_{rms} \propto \frac{1}{\sqrt{M}} \Rightarrow \frac{v_{O_2}}{v_{H_2}} = \sqrt{\frac{M_{H_2}}{M_{O_2}}} = \sqrt{\frac{1}{16}} = \frac{1}{4}$$

318 (c)

Mean kinetic energy of gas molecule

$$E = \frac{f}{2}kT = \frac{f}{2}k(t + 273) = \left(\frac{f}{2}k\right)t + \frac{f}{2} \times 273k;$$

Comparing it with standard equation of straight line

$$y = mx + c$$
. We get $m = \frac{f}{2}k$ and $c = \frac{f}{2}273k$

So the graph between E and t will be straight line with positive intercept on E-axis and positive slope with t-axis

319 (b)

In isothermal changes, temperature remains constant

320 (a)

$$E = \frac{3}{2}RT \Rightarrow \frac{E'}{E} = \frac{T'}{T} = \frac{400}{300} = \frac{4}{3} = 1.33$$

321 (c)

When saturated vapour is compressed some of the vapour condenses but pressure does not change

322 (d)

10 g of ice at
$$-10^{\circ}$$
C to ice at 0° C

 $Q_1 = \text{cm}$, $\Delta \theta = 0.5 \times 10 \times 10 = 50 \text{ cal}$

10 g of ice 0° C to water at 0° C

 $Q_2 = mL = 10 \times 80 = 800 \text{ cal}$

10 g of water at 0° C to water at 100° C

 $Q_3 = \text{cm}$, $\Delta \theta = 1 \times 10 \times 100 = 1000 \text{ cal}$

10 g water at 100° C to steam at 100° C

 $Q_4 = mL = 10 \times 540 = 5400$ cal Total heat required, $Q + Q_1 + Q_2 + Q_3 + Q_4$ = 50 + 800 + 1000 + 5400 = 7250 cal

323 (a)

When the piston is in equilibrium, the pressure is same on both the sides of the piston. It is given that temperature and weight of gas on the two sides of piston not change. From ideal gas equation, pV = n RT, we have $V \propto \text{mass}$ of the gas.

So,
$$\frac{V_1}{V_2} = \frac{m_1}{m_2}$$
 or $\frac{V_1}{V_2} + 1 = \frac{m_1}{m_2} + 1$
Or $\frac{V_1 + V_2}{V_2} = \frac{m_1 + m_2}{m_2}$
Or $\frac{V_2}{V_1 + V_2} = \frac{m_2}{m_1 + m_2} = \frac{2m}{m + 2m} = \frac{2}{3}$

324 (d)

$$PV = \mu RT \Rightarrow P\left(\frac{m}{\rho}\right) = \mu RT \Rightarrow \rho \propto \frac{P}{T}$$

Since *T* becomes four times and *P* becomes twice so ρ becomes $\frac{1}{2}$ times

325 (d)

Kinetic energy is function of temperature

327 (d)

For an ideal gas keeping the temperature same throughout,

$$pV = constant$$

Hence, for a given mass, the graph between pV and V will be a straight line parallel to V-axis whatever may be the volume.

328 (b)

$$P = \frac{\mu RT}{V} = \frac{mRT}{MV} \quad \left(\mu = \frac{m}{M}\right)$$

So, at constant volume pressure-versus temperature graph is a straight line passing through origin with slope $\frac{mR}{MV}$. As the mass is doubled and volume is halved slope becomes four times. Therefore, pressure versus temperature graph will be shown by the line B

329 (a)

In free expansion of Vander waal's gas, its temperature decreases

330 (b)

The mean kinetic energy for gas molecules

$$E = \frac{3}{2}kT \Rightarrow E \propto T$$
 So,
$$\frac{E_1}{F_2} = \frac{T_1}{T_2} \qquad \dots (i)$$

According to question both gases are at the same temperature T.

So,
$$\frac{E_1}{E_2} = \frac{T}{T} = \frac{1}{1}$$

 $\Rightarrow E_1: E_2 = 1: 1$

331 (a)

$$v_{rms} = \sqrt{\frac{3RT}{M}} \Rightarrow T \propto M \Rightarrow \frac{T_{He}}{T_H} = \frac{M_{He}}{M_H}$$

$$\Rightarrow \frac{(273 + 0)}{T_{He}} = \frac{2}{4} \Rightarrow T_{He} = 546K = 273^{\circ}\text{C}$$

332 (b)

$$P_1 = 720kPa, T_1 = 40^{\circ}\text{C} = 273 + 40 = 313K$$

$$P \propto mT \Rightarrow \frac{P_2}{P_1} = \frac{m_2}{m_1} \frac{T_2}{T_1} = \frac{3}{4} \times \frac{626}{313} = 1.5$$

$$\Rightarrow P_2 = 1.5P_1 = 1.5 \times 720 = 1080kPa$$

333 (c)

Since the volume of cylinder is fixed, the heat required is determined by \mathcal{C}_V

He is a monoatomic gas.

Therefore, its molar specific heat at constant volume is

$$C_V = \frac{3}{2}R$$

 \therefore Heat required = no. of moles \times molar specific \times rise in temperature

$$= 2 \times \frac{3}{2}R \times 20 = 60R = 60 \times 8.31 = 498.6J$$

334 (d)

$$l = l_0 \left(1 + \frac{1}{100} \right)$$

$$\therefore 2l^2 = 2l_0^2 \left(1 + \frac{1}{100} \right)^2$$

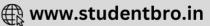
$$Or 2l^2 - 2l_0^2 = 2l_0^2 \times \frac{2}{100}$$

$$Or \Delta S = S \times \frac{2}{100} \text{ or } \frac{\Delta S}{S} = \frac{2}{100} = 2\%$$

335 (d)

$$\frac{(v_{rms})_1}{(v_{rms})_2} = \sqrt{\frac{T_1}{T_2}} \Rightarrow \frac{500}{(v_{rms})_2} = \sqrt{\frac{0 + 273}{819 + 273}}$$
$$= \sqrt{\frac{273}{1092}}$$
$$(v_{rms})_2 = 500\sqrt{\frac{1092}{273}} = 500\sqrt{4} = 1000\frac{m}{s} = 1\frac{km}{s}$$

336 (a)


The value of universal gas constant is approx.

$$2\frac{cal}{mole - Kelvin}$$

337 (a)

Let V be the volume of solid; d be its density and m be its mass; if g coefficient of volume expansion of liquid, then

Density at temperature t_1 is, $d_1 = \frac{d_0}{1+\gamma t_1}$

Density at temperature t_2 is, $d_2 = \frac{d_0}{1+yt_2}$

According to Archimede's principle,

$$f_1 V d_1 = m = f_2 V d_2$$

$$\begin{array}{l} f_1 V \; d_1 = m = f_2 \, V d_2 \\ \text{Or} \; \frac{d_1}{d_2} = \frac{f_2}{f_1} = \frac{d_0}{(1 + \gamma t_1)} \frac{(1 + \gamma t_2)}{d_0} \end{array}$$

$$0r f_1 + f_1 \gamma t_2 = f_2 + f_2 \gamma t_1$$

$$f_1 - f_2 = \gamma (f_2 t_1 - f_1 t_2)$$

$$\gamma = \frac{(f_1 - f_2)}{f_2 t_1 - f_1 t_2}$$

338 (c)

$$\gamma_{poly} = \frac{(4 + f_{vib})}{(3 + f_{vib})}$$

 $f_{vib} = \text{degree of freedom due to vibration} \Rightarrow$

$$\gamma_{poly} < \frac{4}{3}$$

Or $\gamma_{poly} < 1.33$

Also you can remember that as the atomicity of gas increases the value of y-decreases

339 (a)

For NH_3 , degree of freedom f = 6

$$\Rightarrow \frac{C_P}{C_V} = \gamma = 1 + \frac{2}{f} = 1 + \frac{2}{6} = \frac{4}{3} = 1.33$$

From
$$C_V = \frac{1}{2}fR = \frac{1}{2} \times 6R = 3R$$

Mean kinetic energy per molecule $E = \frac{f}{2}kT =$

342 (b)

Mean free path $\lambda \propto \frac{1}{R}$; If λ is doubled then P becomes half

343 (a)

Average kinetic theory of one molecule is

$$E = \frac{3}{2}kT$$

where *k* is Boltzmann constant and *T* the absolute temperature.

 $T_1 = -68$ °C = 273 - 68 = 205 K, Given,

$$E_1 = E, \qquad E_2 = 2E$$

$$\therefore \frac{E_1}{F} = \frac{T_1}{T}$$

$$\Rightarrow T_2 = \frac{T_1 E_2}{E_1}$$

$$T_2 = \frac{205 \times 2E}{E} = 410 \text{ K}$$

344 (c)

$$C_V = \frac{R}{0.67} = 1.5R = \frac{3}{2}R$$

This is the value for monoatomic gases

345 (c)

$$C_{\text{isothermal}} = \infty$$
 and $C_{\text{adiabatic}} = 0$

346 (b)

$$C_P - C_V = \frac{R}{J} \Rightarrow C_P = \frac{R}{J} + C_V = \frac{R}{J} + \frac{R}{J(\gamma - 1)}$$
$$\Rightarrow C_P = \frac{R}{J} \left(\frac{\gamma}{\gamma - 1}\right) = \frac{R}{J} \left(\frac{1.5}{1.5 - 1}\right) = \frac{3R}{J}$$

347 (d)

For any gas
$$C_P - C_V = 1.99 = 2 \frac{cal}{mol - K}$$

$$\frac{v_2}{v_1} = \sqrt{\frac{T_2}{T_1}} \Rightarrow \frac{v_S}{400} = \sqrt{\frac{(273 + 227)}{(273 + 27)}} = \sqrt{\frac{5}{3}}$$
$$\Rightarrow v_S = 400\sqrt{5/3} = 516m/s$$

350 (c)

Using pressure or Gay-Lussac's law
$$\frac{P_1}{P_2} = \frac{T_1}{T_2}$$
 or $P_2 = \frac{P_1 T_2}{T_1} = \frac{P(273 + 927)}{(273 + 27)} = 4P$

351 (a)

$$\frac{C_P}{C_V} = \gamma = 1 + \frac{2}{f}$$

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \Rightarrow T_2 = \frac{P_2 V_2}{P_1 V_1} \times T_1$$
$$= T_2 = \frac{1}{30} \times \frac{10}{1} \times 300 = 100K = -173^{\circ}C$$

353 (a)

$$v_{average} = \sqrt{\frac{8RT}{\pi M}} \Rightarrow v_{av} \propto \sqrt{T}$$

354 (a)

$$\Delta p = mV - (-mV) = 2mV$$

355 (b)

Kinetic energy for
$$1g \Rightarrow E_{\text{Trans}} = \frac{3}{2}rT = \frac{3}{2}\frac{RT}{M}$$

356 (b)

$$C_P - C_V = R$$

At constant pressure, Heat = $nC_P\theta$

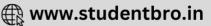
$$\Rightarrow 310 = 2 \times C_P \times (35 - 25) = 20C_P$$

$$\Rightarrow C_P = \frac{310}{20} = 15.5$$

At constant volume, Heat required = $nC_V\theta$

$$\Rightarrow Q = 2 \times (C_P - R) \times (32 - 25)$$

$$= 2 \times (15.5 - 8.3) \times 10 = 2 \times 7.2 \times 10 = 144J$$


357 (b)

The collision of molecules of ideal gas is elastic collision

358 (c)

Mean kinetic energy of molecule depends upon temperature only. For O_2 it is same as that of H_2 at the same temperature of -73° C

359 (a)

When C_P and C_V are given with *calorie* and R with *Joule* then $C_P - C_V = R/J$

360 (c)

$$C_V = \frac{n_1 C_{v_1} + n_2 C_{V_2}}{n_1 + n_2}$$
$$= \frac{1 \times \frac{3}{2} R + 1 \times \frac{5}{2} R}{1 + 1} = 2R$$

361 (b)

Molar specific heat of the mixture at constant volume is

$$C_V = \frac{n_1 C_{V_1} + n_2 C_{V_2}}{(n_1 + n_2)}$$
$$= \frac{2(\frac{3}{2}R) + 3(\frac{5}{2}R)}{2+3} = 2.1 R$$

363 (d)

$$v_{rms} = \sqrt{\frac{3P}{\rho}} \Rightarrow P = \frac{v_{rms}^2 \rho}{3}$$
$$= \frac{(3180)^2 \times 8.99 \times 10^{-2}}{3}$$
$$= 3.03 \times 10^5 N/m^2 = 3 atm$$

364 (c)

Kinetic energy of ideal gas depends only on its temperature. Hence, it remains constant whether its pressure is increased or decreased.

365 (a)

$$V \propto T \Rightarrow \frac{V_1}{V_2} = \frac{T_1}{T_2} \Rightarrow \frac{200}{V_2} = \frac{(273 + 20)}{(273 - 20)} = \frac{293}{253}$$

$$\Rightarrow V_2 = \frac{200 \times 253}{293} = 172.6ml$$

366 (b)

$$PV = \mu RT = \frac{m}{M}RT \Rightarrow \frac{m}{VP} \Rightarrow \frac{\text{density}}{P} = \frac{M}{RT}$$

$$\left(\frac{\text{density}}{P}\right)_{At \ 0^{\circ}\text{C}} = \frac{M}{R(273)} = x \quad ...(i)$$

$$\left(\frac{\text{density}}{P}\right)_{At \ 100^{\circ}\text{C}} = \frac{M}{R(373)} \quad ...(ii)$$

$$\Rightarrow \left(\frac{\text{density}}{P}\right)_{At \ 100^{\circ}\text{C}} = \frac{273x}{373}$$

367 (c

Here,
$$\Delta l = 80.3 - 80.0 = 0.3$$
 cm $l = 80$ cm, $\alpha = 12 \times 10^{-6}$ °C⁻¹

Rise in temperature $\Delta T = \frac{\Delta l}{l\alpha}$

$$\Delta T = \frac{0.3}{80 \times 12 \times 10^{-6}} = 312.5$$
°C

369 (a)

$$\left(P + \frac{aT^2}{V}\right)V^c = (RT + b) \Rightarrow P$$
$$= (RT + b)V^{-c} - (aT^2)V^{-1}$$

Comparing this equation with $P = AV^m - BV^n$ We get m = -c and n = -1

370 (d)

$$\Delta Q = KA \left(\frac{\Delta T}{\Delta x}\right) \Delta t$$
, where $A = 4 \pi r^2$
= $0.008 \times 4 \times \frac{22}{7} (6 \times 10^8)^2 \times \left(\frac{32}{10^5}\right) \times 86400$
= 10^{18} cal

371 (c)

$$v_{rms} \propto \sqrt{T} \Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{T_1}{T_2}} = \sqrt{\frac{200}{800}} = \frac{1}{2} \Rightarrow v_2 = 2v_1$$

372 (c

$$p = \frac{n_1 RT + n_2 RT + n_3 RT}{V}$$

$$= (n_1 + n_2 + n_3) \frac{RT}{V}$$

$$= \left(\frac{8}{16} + \frac{14}{28} + \frac{22}{44}\right) \times \frac{0.082 \times 300}{10} = 3.69 \text{ atm}$$

373 (c)

As number of moles increases, pressure increases and at certain pressure vapour condenses hence pressure now decreases

374 (d)

Root mean square velocity

$$v_{\rm rms} = \sqrt{\frac{3RT}{M}}$$

where *R* is gas constant, *T* the temperature and *M* molecular weight.

Given,
$$M_{N_2} = 28$$
, $M_{O_2} = 32$, $T_{O_2} = 127^{\circ}C = 127 + 273 = 400 \text{ K}$

$$\frac{v_{O_2}}{v_{N_2}} = \sqrt{\frac{T_{O_2}}{M_{O_2}}} \times \frac{M_{N_2}}{T_{N_2}} = \sqrt{\frac{400}{32}} \times \frac{28}{T_{N_2}}$$

$$= 1$$

$$T_{N_2} = 350 \text{ K} = 77^{\circ}\text{C}.$$

375 (b)

Temperature becomes $\frac{1}{4}th$ of initial value $[1200K = 927^{\circ}\text{C} \rightarrow 300K = 27^{\circ}\text{C}]$ So, using $v_{rms} \propto \sqrt{T}.r.m.s.$ velocity will be half of the initial value

376 (d)

$$v_{rms} \propto \frac{1}{\sqrt{M}}$$
; so $\frac{(v_{rms})_{O_2}}{(v_{rms})_{H_2}} = \sqrt{\frac{M_{H_2}}{M_{O_2}}} = \sqrt{\frac{2}{32}} = 1:4$

377 (b)

Number of moles n = 5 mol, $T_1 = 100 ^{\circ}\text{C}$,

$$T_2 = 120$$
°C,

$$\Delta U = 80 \text{ J}$$

Rise in temperature $\Delta t = 120 - 100 = 20$ °C

$$\Delta U = ms\Delta t$$

$$\frac{80}{5} = 1 \times s \times 20$$

$$s = 0.8 \, \text{J}$$

$$\therefore$$
 For 5 mol, $s = 0.8 \times 5 \text{ JK}^{-1} = 4 \text{ JK}^{-1}$

378 (a)

Ratio of specific heat for a monoatomic gas is

 $\frac{5}{3}$ and for diatomic gas is $\frac{7}{5}$.

Given, $n_1 = 1, n_2 = 3, n = 4$

$$\frac{n}{\gamma - 1} = \frac{n_1}{\gamma_1 - 1} + \frac{n_2}{\gamma_2 - 1}$$

$$\frac{4}{\gamma - 1} = \frac{1}{\frac{5}{2} - 1} + \frac{3}{\frac{7}{2} - 1}$$

$$\Rightarrow \frac{4}{\gamma - 1} = \frac{3}{2} + \frac{15}{2} = 9$$

$$4 = 9\nu - 9$$

$$\Rightarrow \qquad 9\gamma = 13 \qquad \Rightarrow \gamma = \frac{13}{9}$$

Now,
$$C_V(\gamma - 1) = R$$

or $C_V = \frac{R}{\gamma - 1} = \frac{8.3}{\frac{13}{4} - 1} = \frac{8.3 \times 9}{4}$

$$\Rightarrow$$
 $C_V = 18.7 \text{ J mol}^{-1} - \text{K}^{-1}$

379 (b)

Using the relation $p = \frac{1}{3} \frac{mnv^2}{V}$

...(i)

$$p' = \frac{1}{3} \frac{\frac{m}{2} n(2v)^2}{V}$$

...(ii)

Dividing Eq.(ii) by Eq. (i), we get

$$\frac{p'}{p} = 2$$

$$p: p' = 1: 2$$

The ratio of initial and final pressures is 1:2.

380 (c)

Molar specific heat at constant pressure $C_P = \frac{7}{2}R$

Since,
$$C_P - C_V = R \Rightarrow C_V = C_P - R = \frac{7}{2}R - R =$$

$$\frac{3}{2}R$$

$$\therefore \frac{C_P}{C_V} = \frac{(7/2)R}{(5/2)R} = \frac{7}{5}$$

381 (d)

According to the equilibrium theorem, the molar heat capacities should be independent of temperature. However, variations in C_V and C_P are observed as the temperature changes. At very high temperatures, vibrations are also important and that affects the values of C_V and C_P for diatomic and polyatomic gases. Here in this question according to given information (d) may be correct answer

382 (d)

We know
$$v_s = \sqrt{\frac{\gamma P}{\rho}}$$
 and $v_{rms} = \sqrt{\frac{3P}{\rho}}$

$$\therefore \frac{v_{rms}}{v_s} = \sqrt{\frac{\gamma}{3}}$$

383 (a)

For 1
$$g$$
 gas $PV = rT = \left(\frac{R}{M}\right)T$

Since P and V are constant $\Rightarrow T \propto M \Rightarrow \frac{T_{N_2}}{T_{O_2}} = \frac{M_{N_2}}{M_{O_2}}$

$$\Rightarrow \frac{T_{N_2}}{(273+15)} = \frac{28}{32} \Rightarrow T_{N_2} = 252K = -21^{\circ}\text{C}$$

384 (a)

$$(\Delta Q)_V = C_V \Delta T = \frac{f}{2} R \Delta T$$

$$\Rightarrow \Delta T \propto \frac{1}{f}$$

Also $f_{Mono} < f_{Dia} \Rightarrow (\Delta T)_{Mono} > (\Delta T)_{Dia}$

385 **(b**

$$v_{rms} = \sqrt{\frac{3RT}{M}} = \sqrt{3}\sqrt{\frac{RT}{M}} = 1.73\sqrt{\frac{RT}{M}}$$

386 (d)

$$PV = kT \Rightarrow P\left(\frac{m}{\rho}\right) = kT \Rightarrow \rho = \frac{Pm}{kT}$$

387 (c)

Below $100\,K$ only translational degree of freedom is considered. Hence

$$\gamma_{mixture} = \frac{\frac{\mu_1 \gamma_1}{\gamma_1 - 1} + \frac{\mu_2 \gamma_2}{\gamma_2 - 1}}{\frac{\mu_1}{\gamma_2 - 1} + \frac{\mu_2}{\gamma_2 - 1}} \text{according}$$

to question,
$$\mu_1 = \mu_2$$
 and $\gamma_1 = \gamma_2 = 1 + \frac{2}{3} = \frac{5}{3}$

$$\Rightarrow \gamma_{mix} = \gamma_1 = \frac{5}{3}$$

KINETIC THEORY

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 1 to 0. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

1

- Statement 1: For higher temperatures, the peak emission wavelength of a black body shifts to lower
 - wavelengths.
- Statement 2: Peak emission wavelength of a black body is proportional to the fourth power of
 - temperature.

2

- **Statement 1:** Specific heat of a gas at constant pressure (C_P) is greater than its specific heat at constant
 - volume (C_V)
- Statement 2: At constant pressure, some heat is spent in expansion of the gas

3

- Statement 1: If a gas container in motion is suddenly siopped, the temperature of the gas tises
- Statement 2: The kinetic energy of ordered mechanical motion is converted in to the kinetic energy of
 - random motion of gas molecules

4

- **Statement 1:** Mean free path of a gas molecules varies inversely as density of the gas
- **Statement 2:** Mean free path varies inversely as pressure of the gas

5

- **Statement 1:** The root mean square and most probable speeds of the molecules in gas are the same.
- **Statement 2:** The Maxwell distribution for the speed of molecules in a gas is symmetrical.

6 Statement 1: Internal energy of an ideal gas does not depend upon volume of the gas Statement 2: Internal energy of ideal gas depends on temperature of gas 7 Statement 1: Two bodies at different temperature, if brought in thermal contact do not necessary settle to the mean temperature. **Statement 2:** The two bodies may have different thermal capacities. 8 Statement 1: For an ideal gas, at constant temperature, the product of the pressure and volume is constant Statement 2: The mean square velocity of the molecules is inversely proportional to mass 9 Statement 1: When temperature of a black body is halved, wavelength corresponding to which energy radiated is maximum becomes twice. Statement 2: This is as per Wien's law. 10 Statement 1: Equal masses of helium and oxygen gases are given equal quantities of heat. There will be a greater rise in the temperature of helium compared to that of oxygen Statement 2: The molecular weight of oxygen is more than the molecular weight of helium 11 **Statement 1:** Air pressure in a car tyre increases during driving Statement 2: Absolute zero temperature is not zero energy temperature 12 Statement 1: When temperature difference across the two sides of a wall is increased, its thermal conductivity increases. **Statement 2:** Thermal conductivity depends on nature of material of the wall. 13 **Statement 1:** Cooking in a pressure cooker is faster. Statement 2: Because steam does not leak out. 14 **Statement 1:** The root mean speed (rms) of oxygen molecules at a certain absolute temperature *T* is *c*. If the temperature is doubled and oxygen gas dissociates into atomic oxygen, the rms speed would be 2c.

Statement 2:
$$c \propto \sqrt{\frac{T}{M}}$$

15

Statement 1: When speed of sound in gas is c then $C_{rms} = \sqrt{\frac{3}{\nu}} \times c$

Statement 2:
$$C = \sqrt{\frac{\gamma P}{p}}$$

16

Statement 1: The number of degrees of freedom of triatomic molecules is 6.

Statement 2: Triatomic molecules have three translational degrees of freedom and three rotational degrees of freedom.

17

Statement 1: The ratio of specific heat gas at constant pressure and specific heat at constant volume for a diatomic gas is more than that for a monoatomic gas

Statement 2: The molecules of a monoatomic gas have more degree of freedom than those of a diatomic gas

18

Statement 1: A gas has a unique value of specific heat

Statement 2: Specific heat is defined as the amount of heat required to raise the temperature of unit mass of the substance through unit degree

19

Statement 1: The number of molecules in 1 cc. of water is nearly equal to $1/3 \times 10^{22}$.

Statement 2: The number of molecules per gm mole of water is equal to Avogadro's number (= $6.023 \times 10^{23} \text{ g}^{-1} \text{ mol}^{-1}$)

20

Statement 1: When speed of sound in a gas is c, $c_{rms} = \sqrt{\frac{3}{\gamma} \times c}$

Statement 2: $c = \sqrt{\frac{\gamma p}{\rho}}$

21

Statement 1: The SI unit of Stefan's constant is $Wm^{-2} K^{-4}$.

Statement 2: This follows from Stefan's law, $E = \alpha T^4 : \alpha = \frac{E}{T^4} = \frac{\text{Wm}^{-2}}{\text{K}^4}$

22

Statement 1: The internal energy of a real gas is function of both, temperature and volume

Statement 2: Internal kinetic energy depends on temperature and internal potential energy depends on volume

23

Statement 1: Maxwell speed distribution graph is symmetric about most probable speed

Statement 2: rms speed ideal gas, depends upon it's type (monoatomic, diatomic and polyatomic) Statement 1: The rms velocity of gas molecules is doubled when temperature of gas becomes four times. **Statement 2:** $C \propto \sqrt{T}$ **Statement 1:** In pressure-temperature (P-T) phase diagram of water, the slope of the melting curve is found to be negative Statement 2: Ice contracts on melting to water Statement 1: For monoatomic gas atom the number of degrees of freedom is 3. Statement 2: $\frac{C_p}{C_v} = \gamma = \frac{5}{3}$ **Statement 1:** The rate of loss of heat of a body at 300 K is R. At 900 K, the rate of loss becomes 81 R Statement 2: This is as per Newton's Law of cooling. Statement 1: Absolute zero is the temperature corresponding to zero energy Statement 2: The temperature at which no molecular motion cease is called absolute zero temperature **Statement 1:** The total translational kinetic energy of all the molecules of a given mass of an ideal gas is 1.5 times the product of its pressure and its volume The molecules of a gas collide with each other and the velocities of the molecules change due to the collision Statement 1: When small temperature difference between a liquid and its surrounding is doubled, the rate of loss of heat of the liquid becomes twice. Statement 2: This is as per Newton's law of cooling.

Statement 1: A gas can be liquified at any temperature by increase of pressure alone

Statement 2: On increasing pressure the temperature of gas decreases

24

25

26

27

28

29

30

31

KINETIC THEORY

: ANSWER KEY:

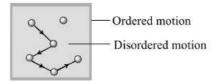
1)	c	2)	a	3)	a	4)	a	17)	d	18)	d	19)	a	20)	b
5)	d	6)	b	7)	a	8)	b	21)	a	22)	a	23)	d	24)	a
9)	a	10)	b	11)	b	12)	d	25)	a	26)	b	27)	c	28)	d
13)	c	14)	a	15)	b	16)	a	29)	b	30)	a	31)	d		

KINETIC THEORY

: HINTS AND SOLUTIONS :

1 (c)

 $\lambda_m \propto \frac{1}{T}$ as per Wien's displacement law. Assertion is true, but the Reason is false.


2 (a)

 C_V is used in increasing the internal energy of the gas while C_P is used in two waqys (i) to change the internal energy and (ii) to do expansion of gas. Hence $C_P > C_V$

3 (a)

The motion of the container is known as the ordered motion of the gas and zigzag motion of gas molecules within the container is called disordered motion.

When the container suddenly stops, ordered kinetic energy gets converted into disordered kinetic energy which in turn increases the temperature of the gas

4 (a)

The mean free path of a gas molecule is the average distance between two successive collisions. It is represented by λ .

$$\lambda = \frac{1}{\sqrt{2}} \frac{kT}{\pi \sigma^2 P}$$
 and $\lambda = \frac{m}{\sqrt{2} \pi \sigma^2 d}$

Here, $\sigma = 0$ diameter of molecule and k = Boltzmann's constant

$$\Rightarrow \lambda \propto 1/d, \lambda \propto T \text{ and } \lambda \propto 1/P$$

Hence, mean free path varies inversely as density of the gas.

It can be easily proved that the mean free path varies directly as the temperature and inversely as the pressure of the gas

5 **(d)**

Root mean square speed of

Or
$$V_{rms} = \sqrt{\frac{3RT}{M}}$$

While most probable speed is

$$V_{mp} = \sqrt{\frac{2RT}{M}}$$

It is obvious that $V_{rms} > V_{mp}$

Also Maxwell distribution for the speed of molecules in a gas is asymmetrical.

6 **(b)**

Internal energy of an ideal gas does not depend upon volume of the gas, because there are no forces of attraction/repulsion amongst the molecules of an ideal gas.

Also internal energy of ideal gas depends on temperature

7 (a)

When two bodies at temperature T_1 and T_2 are brought in thermal contact, they do settle to the mean temperature $\left(\frac{T_1+T_2}{2}\right)$. They will do so, in case the two bodies were of same mass and material ie, same thermal capacities. In other words, the two bodies may be having different thermal capacities that's why they do not settle to the mean temperature, when brought together.

8 **(b)**

For an ideal gas PV= constant (at constant temperature) and $\overline{v^2}=v_{rms}^2=\frac{3kT}{m}\Rightarrow \overline{v^2}\propto \frac{1}{m}$

9 **(a**

According to Wien's law, $\lambda_m \propto \frac{1}{\tau}$ when T is halved, 17 λ_m becomes twice. Both, the Assertion and Reason are true and the latter is correct explanation of the former.

10 **(b)**

Helium is a monoatomic gas, while oxygen is diatomic. Therefore, the heat given to helium will be totally used up in increasing the translational kinetic energy of its molecules; whereas the heat given to oxygen will be used up in increasing the translational kinetic energy of the molecule and also in increasing the kinetic energy of rotation and vibration. Hence there will be a greater rise in the temperature of helium

11 (b)

When a person is driving a car then the temperature of air inside the tyre is increased because of motion. Form the Gay Lussac's law,

Hence, when temperature increases the pressure also increase

12 (d)

Thermal conductivity of the wall depends only on nature of material of the wall; and not on temperature difference across its two sides. Assertion is false, but Reason is true.

13 (c)

On increasing pressure, boiling point of water increases. Therefore, cooking is faster. Assertion is true, Reason is false.

14 (a)

 $c_{\rm rms} \propto \sqrt{\frac{T}{M}}$; When T is doubled and M has become half, the, $c_{\rm rms}$ will become two times.

15 (b)

Both relation are correct but reason is not the correct explain for Assertion.

16 (a)

A non-linear molecule can rotate about any of three co-ordinate axes. Hence, it has 6 degrees of freedom: 3 translational and 3 rotational.

For a monoatomic gas, number of degrees of freedom, f = 3, and for a diatomic gas f = 5As, $\frac{C_P}{C_V} = \gamma = 1 + \frac{2}{f}$ $\left(\frac{C_P}{C_V}\right)_{mono} = 1 + \frac{2}{3} = \frac{5}{3}$ and $\left(\frac{C_P}{C_V}\right)_{di} = 1 + \frac{2}{5} = \frac{7}{5}$

 $\Rightarrow \left(\frac{C_P}{C_V}\right)_{mono} > \left(\frac{C_P}{C_V}\right)_{di}$

This is because a gas can be heated under different conditions of pressure and volume. The amount of heat required to raise the temperature of unit mass through unit degree is different under different conditions of heating

19 (a)

Density of water = 1 g/cc

∴ Mass of 1 cc of water = volume × density

 $= 1 \times 1 = 1$ g of water

In 1 g mole (or 18 g) of water, the total number of molecules

 $=6.023 \times 10^{23}$

.. Number of molecules of water in 1 g

$$=\frac{6.023\times10^{23}}{18}=\frac{1}{3}\times10^{23}$$

Thus, Assertion and Reason are true.

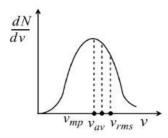
20 (b)

We know, $c_{\rm rms} = \sqrt{\frac{3p}{p}}$ and $c = \sqrt{\frac{\gamma p}{p}}$

Dividing, we get $\frac{c_{\text{rms}}}{c} = \sqrt{\frac{3}{v}}$

21 (a)

Both the Assertion and Reason are true and Reason is correct explanation of Assertion.


22 (a)

In real gas, intermolecular force exist. Work has to be done in changing the distance between the molecules. Therefore, internal energy of real gas is sum of internal kinetic and internal potential energy which are function of temperature and

volume respectively. Also change in internal energy of a system depends only on initial and final states of the system

23 (d)

Maxwell speed distribution graph is asymmetric graph, because it has a long "tail" that extends to infinity.

Also v_{rms} depends upon nature of gas and it's temperature

24 (a)

The rms velocity of gas molecules is given by

$$V_{rms} = c = \sqrt{\frac{3KT}{m}}$$

So,
$$c \propto \sqrt{T}$$

Hence, it is clear that when temperature becomes four times then rms velocity will be two times.

25 (a)

The negative slope is because of change of phase. This happens to liquids which contract on melting

26 **(b)**

Using the relation

$$y = 1 + \sqrt{\frac{2}{\mathcal{F}}}$$

($\mathcal{F} = the$ number of degrees of freedom for gas atom) For mono0atomic gas, $\mathcal{F} = 3$

Hence,
$$y_m = 1 + \frac{2}{3} = \frac{5}{3}$$

27 (c)

Stefan's law applies here and not the Newton's law of cooling

According to Stefan's law,

$$\frac{E_2}{E_1} = \left(\frac{T_2}{T_1}\right)^4 = \left(\frac{900}{300}\right)^4 = 81$$

$$\frac{E_2}{R} = 81$$

$$\therefore E_2 = 81 R$$

Assertion is true, Reason is false.

28 (d)

Only the energy of translatory motion of molecules is represented by temperature. Others forms of energy such as intermolecular potential energy, energy of molecular relation, *etc.* are not represented by temperature. Hence at absolute zero, the translatory motion of molecules ceases but other forms of molecular energy do not become zero. Therefore absolute zero temperature is not the temperature of zero-enerfy. At absolute zero molecular motion ceases

29 **(b)**

Total translational kinetic energy = $\frac{3}{2}nRT = \frac{3}{2}PV$ In an ideal gas all molecules moving randomly in all direction collide and their velocity changes after collision

30 (a)

According to Newton's law of cooling

$$\frac{dQ}{dt} \propto (\theta - \theta_0)$$

Both, the Assertion and Reason are true and latter is correct explanation of the former.

31 (d)

A vapour above the critical temperature is a gas and gas below the critical temperature for the substance is a vapour. As gas cannot be liquified by the application of pressure alone, how so ever large the pressure may be while vapour can be liquified under pressure alone. To liquify a gas it must be cooled upto or below its critical temperature

